An Applied Guide to Process and Plant Design


Book Description

An Applied Guide to Process and Plant Design, 2nd edition, is a guide to process plant design for both students and professional engineers. The book covers plant layout and the use of spreadsheet programs and key drawings produced by professional engineers as aids to design; subjects that are usually learned on the job rather than in education. You will learn how to produce smarter plant design through the use of computer tools, including Excel and AutoCAD, "What If Analysis, statistical tools, and Visual Basic for more complex problems. The book also includes a wealth of selection tables, covering the key aspects of professional plant design which engineering students and early-career engineers tend to find most challenging. Professor Moran draws on over 20 years' experience in process design to create an essential foundational book ideal for those who are new to process design, compliant with both professional practice and the IChemE degree accreditation guidelines. - Includes new and expanded content, including illustrative case studies and practical examples - Explains how to deliver a process design that meets both business and safety criteria - Covers plant layout and the use of spreadsheet programs and key drawings as aids to design - Includes a comprehensive set of selection tables, covering aspects of professional plant design which early-career designers find most challenging




An Applied Guide to Water and Effluent Treatment Plant Design


Book Description

An Applied Guide to Water and Effluent Treatment Plant Design is ideal for chemical, civil and environmental engineering students, graduates, and early career water engineers as well as more experienced practitioners who are transferring into the water sector. It brings together the design of process, wastewater, clean water, industrial effluent and sludge treatment plants, looking at the different treatment objectives within each sub-sector, selection and design of physical, chemical and biological treatment processes, and the professional hydraulic design methodologies. This book will show you how to carry out the key steps in the process design of all kinds of water and effluent treatment plants. It provides an essential refresher on the relevant underlying principles of engineering science, fluid mechanics, water chemistry and biology, together with a thorough description of the heuristics and rules of thumb commonly used by experienced practitioners. The water treatment plant designer will also find specific advice on plant layout, aesthetics, economic considerations and related issues such as odor control. The information contained in this book is usually provided on the job by mentors so it will remain a vital resource throughout your career. - Explains how to design water and effluent treatment plants that really work - Accessible introduction to, and overview of, the area that is written from a process engineering perspective - Covers new treatment technologies and the whole process, from treatment plant design, to commissioning




Process Plant Layout


Book Description

Process Plant Layout, Second Edition, explains the methodologies used by professional designers to layout process equipment and pipework, plots, plants, sites, and their corresponding environmental features in a safe, economical way. It is supported with tables of separation distances, rules of thumb, and codes of practice and standards. The book includes more than seventy-five case studies on what can go wrong when layout is not properly considered. Sean Moran has thoroughly rewritten and re-illustrated this book to reflect advances in technology and best practices, for example, changes in how designers balance layout density with cost, operability, and safety considerations. The content covers the 'why' underlying process design company guidelines, providing a firm foundation for career growth for process design engineers. It is ideal for process plant designers in contracting, consultancy, and for operating companies at all stages of their careers, and is also of importance for operations and maintenance staff involved with a new build, guiding them through plot plan reviews. - Based on interviews with over 200 professional process plant designers - Explains multiple plant layout methodologies used by professional process engineers, piping engineers, and process architects - Includes advice on how to choose and use the latest CAD tools for plant layout - Ensures that all methodologies integrate to comply with worldwide risk management legislation




Practical Process Engineering


Book Description




Electrochemical Process Engineering


Book Description

As the subtitle indicates, the overriding intention of the authors has been to provide a practical guide to the design of electrolytic plant. We wanted to show that the procedures for the design and optimization of such a plant are essentially simple and can be performed by readers comparatively new to the electrochemical field. It was important to realize that electrochemical engineering should not be confused with applied electrochemistry but had to be based on the principles of chemical engineering. For this reason, reference is often made to standard chemical engineering texts. Since this is a practical guide rather than a textbook, we have included a large number of worked examples on the principle that a good worked example is worth many paragraphs of text. In some examples we have quoted costs, e.g., of chemicals, plant or services. These costs are merely illustrative; current values will have to be obtained from manufacturers or journals. If this is not possible, approximate methods are available for updating costs to present-day values (see Refs. 1 and 3, Chapter 6).




Process Equipment and Plant Design


Book Description

Process Equipment and Plant Design: Principles and Practices takes a holistic approach towards process design in the chemical engineering industry, dealing with the design of individual process equipment and its configuration as a complete functional system. Chapters cover typical heat and mass transfer systems and equipment included in a chemical engineering curriculum, such as heat exchangers, heat exchanger networks, evaporators, distillation, absorption, adsorption, reactors and more. The authors expand on additional topics such as industrial cooling systems, extraction, and topics on process utilities, piping and hydraulics, including instrumentation and safety basics that supplement the equipment design procedure and help to arrive at a complete plant design. The chapters are arranged in sections pertaining to heat and mass transfer processes, reacting systems, plant hydraulics and process vessels, plant auxiliaries, and engineered safety as well as a separate chapter showcasing examples of process design in complete plants. This comprehensive reference bridges the gap between industry and academia, while exploring best practices in design, including relevant theories in process design making this a valuable primer for fresh graduates and professionals working on design projects in the industry. - Serves as a consolidated resource for process and plant design, including process utilities and engineered safety - Bridges the gap between industry and academia by including practices in design and summarizing relevant theories - Presents design solutions as a complete functional system and not merely the design of major equipment - Provides design procedures as pseudo-code/flow-chart, along with practical considerations




Chemical Engineering Design


Book Description

Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors




Availability Engineering and Management for Manufacturing Plant Performance


Book Description

In today's manufacturing environment, the integration of commercial, production, maintenance, and engineering functions is a common and crucial goal. In this timely volume, Richard G. Lamb presents a new standard within the enterprise and plant design management. Lamb shows readers how to advance the plant's role in enterprise business performance and leadership by most cost effectively achieving the mechanical availability necessary to perform in the face of current events, business cycles, and industry trends. Performance is from the designed and managed reliability and maintainability of its equipment.




Process Plant Design


Book Description

This book describes the fascinating wealth of activities as they occur in the design, construction and commissioning of a chemical plant - a jigsaw puzzle of the work of chemical engineers, chemists, constructors, architects, electrical engineers, process automation engineers, economists and legal staff. The author first takes the reader through the conceptual phase, in which the economic relevance and environmental impact need to be considered and supplemented by accurate estimates of capital requirements and profitability. This phase ends with the choice of an appropriate engineering firm and the conclusion of the contract, after which the reader is guided through all aspects of the implementation phase from the engineering of the chemical plant to commissioning, equipment and material procurement, the erection phase and the successful test run, after which the new facility is handed over to its owner. The book also illustrates many potential sources of errors by means of examples from practice, and how, aside professional skills, teamwork and communication are also absolutely essential to keep such a complex project on track.




Handbook for Process Plant Project Engineers


Book Description

This excellent book systematically identifies the issues surrounding the effective linking of project management techniques and engineering applications. It is not a technical manual, nor is it procedure-led. Instead, it encourages creative learning of project engineering methodology that can be applied and modified in different situations. In short, it offers a distillation of practical ‘on-the job’ experience to help project engineers perform more effectively. While this book specifically addresses process plants, the principles are applicable to other types of engineering project where multidisciplinary engineering skills are required, such as power plant and general factory construction. It focuses on the technical aspects, which typically influence the configuration of the plant as a whole, on the interface between the various disciplines involved, and the way in which work is done – the issues central to the co-ordination of the overall engineering effort. It develops an awareness of relationships with other parties – clients, suppliers, package contractors, and construction managers – and of how the structure and management of these relationships impact directly on the performance of the project engineer. Readers will welcome the author’s straightforward approach in tackling sensitive issues head on. COMPLETE CONTENTS Introduction A process plant A project and its management A brief overview The engineering work and its management The project’s industrial environment The commercial environment The contracting environment The economic environment Studies and proposals Plant layout and modelling Value engineering and plant optimization Hazards, loss, and safety Specification, selection and purchase Fluid transport Bulk solids transport Slurries and two-phase transport Hydraulic design and plant drainage Observations on multidiscipline engineering Detail design and drafting The organization of work Construction Construction contracts Commissioning Communication Change and chaos Fast-track projects Advanced information management Project strategy development Key issues summary