An Assessment of the Economic, Regulatory and Technical Implications of Large-scale Solar Power Deployment


Book Description

Electricity from solar energy has many favorable attributes. Despite its current high cost relative to other technology options, a combination of cost reductions and policy support measures could lead to increasing deployment of solar power technologies. Should this pathway occur, the unique technical and economic characteristics of photovoltaics (PV) and concentrating solar power (CSP) technology will have implications for the wider electric power system. Similarly, the characteristics of the many elements that constitute electric power systems will have implications for the efficient deployment of these technologies. This thesis attempts to assess these technical and economic implications, and derive regulatory implications that result. A static cost-minimization expansion model with an 8760 hour temporal resolution, adapted from the literature, was developed in order to undertake this investigation. Following analytical development of the model formulation, the model was numerically applied to a simplified representation of the ERCOT power system. This application involved assessing changes in investment, dispatch, prices and emissions across various solar power deployment scenarios. The final portion of the thesis then addressed the complexities associated with developing the necessary transmission that may accompany large-scale solar power deployment. Findings from this work include: a) an explicit representation of the components that constitute the marginal system value of PV capacity under transmission constraints b) reasoning for why the optimal system with large scale solar power capacity includes less baseload capacity in the long term - and insights into how this may not be feasible in real systems, and c) a presentation of how solar power deployment paths diverge across capacity and energy support schemes, and across type of solar technology. In addition, it is found that: d) under perfect conditions, locational market prices will provide the adequate locational signals for `system-ecient' deployment, provided that the solar generators 'see' the signals in their objective functions, and e) the appropriateness of transmission charges for solar generators will vary by circumstance - any charge warranted should be considered in tandem with the system pricing mechanism and any renewable support scheme in place.




Future of solar photovoltaic


Book Description

This study presents options to fully unlock the world’s vast solar PV potential over the period until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.




Sustainable Solar Electricity


Book Description

This book provides a detailed life cycle assessment of photovoltaic technologies in order to analyse the environmental and socioeconomic impacts that a large deployment of solar photovoltaic systems will produce in the near future. Including both commercial and emerging technologies, the book presents the energy and materials requirements to manufacture solar electricity power systems at the order of the TeraWatt scale deployment as is envisaged by the International Renewable Energy Agency (IRENA) for the near future. It discusses current manufacturing practices and how these may be adapted in the future including: reuse and recycling of components and materials; raw material supply chains to the manufacturing factories; and end-of-life procedures including recycling and landfilling of modules. The environmental and socioeconomic impacts of solar energy are analysed in detail, providing recommendations for standardization and regulations in order to make photovoltaic technologies, both current and emerging, a really sustainable alternative for the supply of “greener” electricity.




Renewable Energy Applications for Freshwater Production


Book Description

Worldwide, many regions have a great potential to cover part of their pressing water needs by renewable energy powered water treatment processes using either thermal or membrane based technologies. Not only arid and semiarid regions are increasingly suffering from water shortage but also many other regions face a limitation of freshwater resources either by increasing contamination of surface water bodies or groundwater resources unsuitable for drinking and irrigation purposes either due to their high grade of mineralization or their contents of toxic components. In many areas without centralized water supply, treatment techniques using locally available renewable energy resources such as wind, solar and geothermal can provide an economical, social and environmentally sustainable option for clean water production from seawater and from highly mineralized or otherwise unsuitable ground- and surface water. This book provides an overview on possible cost-efficient techniques and application opportunities for different scales and shows why the implementation of these technologies faces numerous technological, economic and policy barriers and provides suggestions how they can be overcome. It serves as a synoptic compendium of the fundamentals of freshwater production using renewable energies, applicable to all types of water, ranging from brackish to marine water and also including industrial and communal residual water. The book is aimed at professionals, academics and decision makers worldwide, working in the areas of water resources, water supply,land planning, energy planning, greenhouse gases emission mitigation and rural development.







The Power of Change


Book Description

Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.




A Review of Solar Energy


Book Description

Solar energy has experienced phenomenal growth in recent years due to both technological improvements resulting in cost reductions and government policies supportive of renewable energy development and utilization. This study analyzes the technical, economic and policy aspects of solar energy development and deployment. While the cost of solar energy has declined rapidly in the recent past, it still remains much higher than the cost of conventional energy technologies. Like other renewable energy technologies, solar energy benefits from fiscal and regulatory incentives and mandates, including tax credits and exemptions, feed-in-tariff, preferential interest rates, renewable portfolio standards and voluntary green power programs in many countries. Potential expansion of carbon credit markets also would provide additional incentives to solar energy deployment; however, the scale of incentives provided by the existing carbon market instruments, such as the Clean Development Mechanism of the Kyoto Protocol, is limited. Despite the huge technical potential, development and large-scale, market-driven deployment of solar energy technologies world-wide still has to overcome a number of technical and financial barriers. Unless these barriers are overcome, maintaining and increasing electricity supplies from solar energy will require continuation of potentially costly policy supports.




Photovoltaic Solar Energy Conversion


Book Description

Photovoltaic Solar Energy Conversion - Technologies, Applications and Environmental Impacts features comprehensive and up-to-date knowledge on the photovoltaic solar energy conversion technology and describes its different aspects in the context of most recent scientific and technological advances. It also provides an insight into future developments in this field by covering four distinct topics include "PV Cells and Modules", "Applications of PV Systems", "Life Cycle and Environmental Impacts" and "PV Market and Policies". An up-to-date reference book on the advances of photovoltaic solar energy conversion technology Describes different aspects of PV and PVT technologies in a comprehensive way Provides information on design, development, and monitoring of PV systems Covers applications of PV and PVT systems in the urban, industry, and agriculture sectors Features new concepts, environmental impacts, market and policies of the PV technology




Electricity from Renewable Resources


Book Description

A component in the America's Energy Future study, Electricity from Renewable Resources examines the technical potential for electric power generation with alternative sources such as wind, solar-photovoltaic, geothermal, solar-thermal, hydroelectric, and other renewable sources. The book focuses on those renewable sources that show the most promise for initial commercial deployment within 10 years and will lead to a substantial impact on the U.S. energy system. A quantitative characterization of technologies, this book lays out expectations of costs, performance, and impacts, as well as barriers and research and development needs. In addition to a principal focus on renewable energy technologies for power generation, the book addresses the challenges of incorporating such technologies into the power grid, as well as potential improvements in the national electricity grid that could enable better and more extensive utilization of wind, solar-thermal, solar photovoltaics, and other renewable technologies.