Atomistic Simulation of Materials


Book Description

This book contains proceedings of an international symposium on Atomistic th Simulation of Materials: Beyond Pair Potentials which was held in Chicago from the 25 th to 30 of September 1988, in conjunction with the ASM World Materials Congress. This symposium was financially supported by the Energy Conversion and Utilization Technology Program of the U. S Department of Energy and by the Air Force Office of Scientific Research. A total of fifty four talks were presented of which twenty one were invited. Atomistic simulations are now common in materials research. Such simulations are currently used to determine the structural and thermodynamic properties of crystalline solids, glasses and liquids. They are of particular importance in studies of crystal defects, interfaces and surfaces since their structures and behavior playa dominant role in most materials properties. The utility of atomistic simulations lies in their ability to provide information on those length scales where continuum theory breaks down and instead complex many body problems have to be solved to understand atomic level structures and processes.







Atomistic Aspects of Epitaxial Growth


Book Description

Epitaxial growth lies at the heart of a wide range of industrial and technological applications. Recent breakthroughs, experimental and theoretical, allow actual atom-by-atom manipulation and an understanding of such processes, opening up a totally new area of unprecedented nanostructuring. The contributions to Atomistic Aspects of Epitaxial Growth are divided into five main sections, taking the reader from the atomistic details of surface diffusion to the macroscopic description of epitaxial systems. many of the papers contain substantial background material on theoretical and experimental methods, making the book suitable for both graduate students as a supplementary text in a course on epitaxial phenomena, and for professionals in the field.




Epitaxial Silicon Technology


Book Description

Epitaxial Silicon Technology is a single-volume, in-depth review of all the silicon epitaxial growth techniques. This technology is being extended to the growth of epitaxial layers on insulating substrates by means of a variety of lateral seeding approaches. This book is divided into five chapters, and the opening chapter describes the growth of silicon layers by vapor-phase epitaxy, considering both atmospheric and low-pressure growth. The second chapter discusses molecular-beam epitaxial growth of silicon, providing a unique ability to grow very thin layers with precisely controlled doping characteristics. The third chapter introduces the silicon liquid-phase epitaxy, in which the growth of silicon layers arose from a need to decrease the growth temperature and to suppress autodoping. The fourth chapter addresses the growth of silicon on sapphire for improving the radiation hardness of CMOS integrated circuits. The fifth chapter deals with the advances in the application of silicon epitaxial growth. This chapter also discusses the formation of epitaxial layers of silicon on insulators, such as silicon dioxide, which do not provide a natural single crystal surface for growth. Each chapter begins with a discussion on the fundamental transport mechanisms and the kinetics governing the growth rate, followed by a description of the electrical properties that can be achieved in the layers and the restrictions imposed by the growth technique upon the control over its electrical characteristics. Each chapter concludes with a discussion on the applications of the particular growth technique. This reference material will be useful for process technologists and engineers who may need to apply epitaxial growth for device fabrication.




Combinatorial Materials Synthesis


Book Description

Pioneered by the pharmaceutical industry and adapted for the purposes of materials science and engineering, the combinatorial method is now widely considered a watershed in the accelerated discovery, development, and optimization of new materials. Combinatorial Materials Synthesis reveals the gears behind combinatorial materials chemistry and thin-film technology, and discusses the prime techniques involved in synthesis and property determination for experimentation with a variety of materials. Funneling historic innovations into one source, the book explores core approaches to synthesis and rapid characterization techniques for work with combinatorial materials libraries.




Scientific Modeling and Simulations


Book Description

Although computational modeling and simulation of material deformation was initiated with the study of structurally simple materials and inert environments, there is an increasing demand for predictive simulation of more realistic material structure and physical conditions. In particular, it is recognized that applied mechanical force can plausibly alter chemical reactions inside materials or at material interfaces, though the fundamental reasons for this chemomechanical coupling are studied in a material-speci c manner. Atomistic-level s- ulations can provide insight into the unit processes that facilitate kinetic reactions within complex materials, but the typical nanosecond timescales of such simulations are in contrast to the second-scale to hour-scale timescales of experimentally accessible or technologically relevant timescales. Further, in complex materials these key unit processes are “rare events” due to the high energy barriers associated with those processes. Examples of such rare events include unbinding between two proteins that tether biological cells to extracellular materials [1], unfolding of complex polymers, stiffness and bond breaking in amorphous glass bers and gels [2], and diffusive hops of point defects within crystalline alloys [3].




Materials Fundamentals of Molecular Beam Epitaxy


Book Description

The technology of crystal growth has advanced enormously during the past two decades. Among, these advances, the development and refinement of molecular beam epitaxy (MBE) has been among the msot important. Crystals grown by MBE are more precisely controlled than those grown by any other method, and today they form the basis for the most advanced device structures in solid-state physics, electronics, and optoelectronics. As an example, Figure 0.1 shows a vertical-cavity surface emitting laser structure grown by MBE. * Provides comprehensive treatment of the basic materials and surface science principles that apply to molecular beam epitaxy * Thorough enough to benefit molecular beam epitaxy researchers * Broad enough to benefit materials, surface, and device researchers * Referenes articles at the forefront of modern research as well as those of historical interest




C, H, N and O in Si and Characterization and Simulation of Materials and Processes


Book Description

Containing over 200 papers, this volume contains the proceedings of two symposia in the E-MRS series. Part I presents a state of the art review of the topic - Carbon, Hydrogen, Nitrogen and Oxygen in Silicon and in Other Elemental Semiconductors. There was strong representation from the industrial laboratories, illustrating that the topic is highly relevant for the semiconductor industry. The second part of the volume deals with a topic which is undergoing a process of convergence with two concerns that are more particularly application oriented. Firstly, the advanced instrumentation which, through the use of atomic force and tunnel microscopies, high resolution electron microscopy and other high precision analysis instruments, now allows for direct access to atomic mechanisms. Secondly, the technological development which in all areas of applications, particularly in the field of microelectronics and microsystems, requires as a result of the miniaturisation race, a precise mastery of the microscopic mechanisms.




Epitaxy


Book Description

The edited volume "Epitaxy" is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of materials science. The book comprises single chapters authored by various researchers and edited by an expert active in this research area. All chapters are complete in themselves but are united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors in the field of materials science as well as opening new possible research paths for further developments.