An Elementary Treatise on Fourier's Series and Spherical, Cylindric, and Ellipsoidal Harmonics


Book Description

First published in 1893, Byerly's classic treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics has been used in classrooms for well over a century. This practical exposition acts as a primer for fields such as wave mechanics, advanced engineering, and mathematical physics. Topics covered include: . development in trigonometric series . convergence on Fourier's series . solution of problems in physics by the aid of Fourier's integrals and Fourier's series . zonal harmonics . spherical harmonics . cylindrical harmonics (Bessel's functions) . and more. Containing 190 exercises and a helpful appendix, this reissue of Fourier's Series will be welcomed by students of higher mathematics everywhere. American mathematician WILLIAM ELWOOD BYERLY (1849-1935) also wrote Elements of Differential Calculus (1879) and Elements of Integral Calculus (1881).







Ellipsoidal Harmonics


Book Description

The first book devoted to ellipsoidal harmonics presents the state of the art in this fascinating subject.




CRC Concise Encyclopedia of Mathematics


Book Description

Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d







Topics in Clifford Analysis


Book Description

Quaternionic and Clifford analysis are an extension of complex analysis into higher dimensions. The unique starting point of Wolfgang Sprößig’s work was the application of quaternionic analysis to elliptic differential equations and boundary value problems. Over the years, Clifford analysis has become a broad-based theory with a variety of applications both inside and outside of mathematics, such as higher-dimensional function theory, algebraic structures, generalized polynomials, applications of elliptic boundary value problems, wavelets, image processing, numerical and discrete analysis. The aim of this volume is to provide an essential overview of modern topics in Clifford analysis, presented by specialists in the field, and to honor the valued contributions to Clifford analysis made by Wolfgang Sprößig throughout his career.




The Road to Reality


Book Description

**WINNER OF THE 2020 NOBEL PRIZE IN PHYSICS** The Road to Reality is the most important and ambitious work of science for a generation. It provides nothing less than a comprehensive account of the physical universe and the essentials of its underlying mathematical theory. It assumes no particular specialist knowledge on the part of the reader, so that, for example, the early chapters give us the vital mathematical background to the physical theories explored later in the book. Roger Penrose's purpose is to describe as clearly as possible our present understanding of the universe and to convey a feeling for its deep beauty and philosophical implications, as well as its intricate logical interconnections. The Road to Reality is rarely less than challenging, but the book is leavened by vivid descriptive passages, as well as hundreds of hand-drawn diagrams. In a single work of colossal scope one of the world's greatest scientists has given us a complete and unrivalled guide to the glories of the universe that we all inhabit. 'Roger Penrose is the most important physicist to work in relativity theory except for Einstein. He is one of the very few people I've met in my life who, without reservation, I call a genius' Lee Smolin