An Elementary Approach To Design And Analysis Of Algorithms


Book Description

'The book under review is an interesting elaboration that fills the gaps in libraries for concisely written and student-friendly books about essentials in computer science … I recommend this book for anyone who would like to study algorithms, learn a lot about computer science or simply would like to deepen their knowledge … The book is written in very simple English and can be understood even by those with limited knowledge of the English language. It should be emphasized that, despite the fact that the book consists of many examples, mathematical formulas and theorems, it is very hard to find any mistakes, errors or typos.'zbMATHIn computer science, an algorithm is an unambiguous specification of how to solve a class of problems. Algorithms can perform calculation, data processing and automated reasoning tasks.As an effective method, an algorithm can be expressed within a finite amount of space and time and in a well-defined formal language for calculating a function. Starting from an initial state and initial input (perhaps empty), the instructions describe a computation that, when executed, proceeds through a finite number of well-defined successive states, eventually producing 'output' and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as randomized algorithms, incorporate random input.This book introduces a set of concepts in solving problems computationally such as Growth of Functions; Backtracking; Divide and Conquer; Greedy Algorithms; Dynamic Programming; Elementary Graph Algorithms; Minimal Spanning Tree; Single-Source Shortest Paths; All Pairs Shortest Paths; Flow Networks; Polynomial Multiplication, to ways of solving NP-Complete Problems, supported with comprehensive, and detailed problems and solutions, making it an ideal resource to those studying computer science, computer engineering and information technology.




Elementary Numerical Analysis


Book Description

This book provides a thorough and careful introduction to the theory and practice of scientific computing at an elementary, yet rigorous, level, from theory via examples and algorithms to computer programs. The original FORTRAN programs have been rewritten in MATLAB and now appear in a new appendix and online, offering a modernized version of this classic reference for basic numerical algorithms.




An Elementary Approach To Thinking Under Uncertainty


Book Description

Published in the year 1985, An Elementary Approach To Thinking Under Uncertainty is a valuable contribution to the field of Cognitive Psychology.




D'oh! Fourier: Theory, Applications, And Derivatives


Book Description

D'oh! Fourier introduces the Fourier transform and is aimed at undergraduates in Computer Science, Mathematics, and Applied Sciences, as well as for those wishing to extend their education. Formulated around ten key points, this accessible book is light-hearted and illustrative, with many applications. The basis and deployment of the Fourier transform are covered applying real-world examples throughout inductively rather than the theoretical approach deductively.The key components of the textbook are continuous signals analysis, discrete signals analysis, image processing, applications of Fourier analysis, together with the origin and nature of the transform itself. D'oh! Fourier is reproducible via MATLAB/Octave and is supported by a comprehensive website which provides the code contained within the book.







The Algorithm Design Manual


Book Description

This newly expanded and updated second edition of the best-selling classic continues to take the "mystery" out of designing algorithms, and analyzing their efficacy and efficiency. Expanding on the first edition, the book now serves as the primary textbook of choice for algorithm design courses while maintaining its status as the premier practical reference guide to algorithms for programmers, researchers, and students. The reader-friendly Algorithm Design Manual provides straightforward access to combinatorial algorithms technology, stressing design over analysis. The first part, Techniques, provides accessible instruction on methods for designing and analyzing computer algorithms. The second part, Resources, is intended for browsing and reference, and comprises the catalog of algorithmic resources, implementations and an extensive bibliography. NEW to the second edition: • Doubles the tutorial material and exercises over the first edition • Provides full online support for lecturers, and a completely updated and improved website component with lecture slides, audio and video • Contains a unique catalog identifying the 75 algorithmic problems that arise most often in practice, leading the reader down the right path to solve them • Includes several NEW "war stories" relating experiences from real-world applications • Provides up-to-date links leading to the very best algorithm implementations available in C, C++, and Java




An Introduction to the Analysis of Algorithms


Book Description

Despite growing interest, basic information on methods and models for mathematically analyzing algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary techniques and results in the field. Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for predicting algorithm performance and for comparing different algorithms on the basis of performance. Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of algorithms that are playing a critical role in the evolution of our modern computational infrastructure. Improvements and additions in this new edition include Upgraded figures and code An all-new chapter introducing analytic combinatorics Simplified derivations via analytic combinatorics throughout The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s The Art of Computer Programming books—and provide the background they need to keep abreast of new research. "[Sedgewick and Flajolet] are not only worldwide leaders of the field, they also are masters of exposition. I am sure that every serious computer scientist will find this book rewarding in many ways." —From the Foreword by Donald E. Knuth




An Introduction to the Analysis of Algorithms


Book Description

A successor to the first edition, this updated and revised book is a great companion guide for students and engineers alike, specifically software engineers who design reliable code. While succinct, this edition is mathematically rigorous, covering the foundations of both computer scientists and mathematicians with interest in algorithms. Besides covering the traditional algorithms of Computer Science such as Greedy, Dynamic Programming and Divide & Conquer, this edition goes further by exploring two classes of algorithms that are often overlooked: Randomised and Online algorithms with emphasis placed on the algorithm itself. The coverage of both fields are timely as the ubiquity of Randomised algorithms are expressed through the emergence of cryptography while Online algorithms are essential in numerous fields as diverse as operating systems and stock market predictions. While being relatively short to ensure the essentiality of content, a strong focus has been placed on self-containment, introducing the idea of pre/post-conditions and loop invariants to readers of all backgrounds. Containing programming exercises in Python, solutions will also be placed on the book's website.




Analysis and Design of Algorithm


Book Description




New Approaches in Classification and Data Analysis


Book Description

The subject of this book is the analysis and processing of structural or quantitative data with emphasis on classification methods, new algorithms as well as applications in various fields related to data analysis and classification. The book presents the state of the art in world-wide research and application of methods from the fields indicated above and consists of survey papers as well as research papers.