An Elementary Treatise on Fourier's Series and Spherical, Cylindric, and Ellipsoidal Harmonics


Book Description

First published in 1893, Byerly's classic treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics has been used in classrooms for well over a century. This practical exposition acts as a primer for fields such as wave mechanics, advanced engineering, and mathematical physics. Topics covered include: . development in trigonometric series . convergence on Fourier's series . solution of problems in physics by the aid of Fourier's integrals and Fourier's series . zonal harmonics . spherical harmonics . cylindrical harmonics (Bessel's functions) . and more. Containing 190 exercises and a helpful appendix, this reissue of Fourier's Series will be welcomed by students of higher mathematics everywhere. American mathematician WILLIAM ELWOOD BYERLY (1849-1935) also wrote Elements of Differential Calculus (1879) and Elements of Integral Calculus (1881).




An Elementary Treatise on Fourier's Series


Book Description

William Elwood Byerly was an American mathematician at Harvard University where he was the "Perkins Professor of Mathematics". He was noted for his excellent teaching and textbooks







Partial Differential Equations in Engineering Problems


Book Description

Concise text derives common partial differential equations, discussing and applying techniques of Fourier analysis. Also covers Legendre, Bessel, and Mathieu functions and general structure of differential operators. 1953 edition.




Handbook of Fourier Analysis & Its Applications


Book Description

Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal processing and related multidimensional transform theory, and quantum physics to elementary deterministic finance and even the foundations of western music theory. As a definitive text on Fourier Analysis, Handbook of Fourier Analysis and Its Applications is meant to replace several less comprehensive volumes on the subject, such as Processing of Multifimensional Signals by Alexandre Smirnov, Modern Sampling Theory by John J. Benedetto and Paulo J.S.G. Ferreira, Vector Space Projections by Henry Stark and Yongyi Yang and Fourier Analysis and Imaging by Ronald N. Bracewell. In addition to being primarily used as a professional handbook, it includes sample problems and their solutions at the end of each section and thus serves as a textbook for advanced undergraduate students and beginning graduate students in courses such as: Multidimensional Signals and Systems, Signal Analysis, Introduction to Shannon Sampling and Interpolation Theory, Random Variables and Stochastic Processes, and Signals and Linear Systems.







Annals of Mathematics


Book Description