Book Description
Summary: Power spectral methods of analysis are applied to flight test measurements of the strain responses of a large swept-wing bomber airplane in rough air in order to determine the effects of airplane structural dynamic on the strain responses. Power spectra and frequency-response functions of the strain responses are determined and compared with the estimated results for a quasi-static reference airplane condition. The results obtained indicate that the bending and shear strain responses are significantly amplified in rough air because of the effect of structural dynamics by an amount that varies from 10 to 20 percent at the root to about 100 percent at the midspan station. The amplifications appear to be larger for the high-altitude tests than for the low-altitude tests. The amplifications of strains appear to be predominantly associated with the excitation of the first wing-bending mode, although at the outboard stations and particularly for the shear strains significant effects also are introduced by high-frequency structural modes. The determination of airplane frequency-response functions for responses to atmospheric turbulence from measurements in continuous rough air involves a relatively new application of random-process techniques. The results obtained appear to be subject to errors from a wide number of sources which give rise to distortions and sampling errors. A general analysis of the reliability of such frequency-response function estimates is presented and methods of estimating the distortions and sampling errors are developed. These methods are applied to the data in order to establish the reliability of the present results. The results indicate that with due precaution reliable estimates of frequency-response functions can be obtained.