An Experimental Introduction to the Theory of Probability


Book Description

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.




Introduction to Probability


Book Description

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.










Probability and Statistics in Experimental Physics


Book Description

A practical introduction to the use of probability and statistics in experimental physics for graduate students and advanced undergraduates. Intended as a practical guide, and not as a comprehensive text, the emphasis is on applications and understanding, on theorems and techniques that are actually used in experimental physics. Proofs of theorems are generally omitted unless they contribute to the intuition in understanding and applying the theorem. The problems, many with worked solutions, introduce the student to the use of computers; occasional reference is made to some of the Fortran routines available in the CERN library, but other systems, such as Maple, will also be useful.




An Experimental Introduction to the Theory of Probability


Book Description

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.




Introduction to Probability


Book Description

An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.







Probability Theory


Book Description

Probability theory




Design and Analysis of Experiments, Volume 1


Book Description

This user-friendly new edition reflects a modern and accessible approach to experimental design and analysis Design and Analysis of Experiments, Volume 1, Second Edition provides a general introduction to the philosophy, theory, and practice of designing scientific comparative experiments and also details the intricacies that are often encountered throughout the design and analysis processes. With the addition of extensive numerical examples and expanded treatment of key concepts, this book further addresses the needs of practitioners and successfully provides a solid understanding of the relationship between the quality of experimental design and the validity of conclusions. This Second Edition continues to provide the theoretical basis of the principles of experimental design in conjunction with the statistical framework within which to apply the fundamental concepts. The difference between experimental studies and observational studies is addressed, along with a discussion of the various components of experimental design: the error-control design, the treatment design, and the observation design. A series of error-control designs are presented based on fundamental design principles, such as randomization, local control (blocking), the Latin square principle, the split-unit principle, and the notion of factorial treatment structure. This book also emphasizes the practical aspects of designing and analyzing experiments and features: Increased coverage of the practical aspects of designing and analyzing experiments, complete with the steps needed to plan and construct an experiment A case study that explores the various types of interaction between both treatment and blocking factors, and numerical and graphical techniques are provided to analyze and interpret these interactions Discussion of the important distinctions between two types of blocking factors and their role in the process of drawing statistical inferences from an experiment A new chapter devoted entirely to repeated measures, highlighting its relationship to split-plot and split-block designs Numerical examples using SASĀ® to illustrate the analyses of data from various designs and to construct factorial designs that relate the results to the theoretical derivations Design and Analysis of Experiments, Volume 1, Second Edition is an ideal textbook for first-year graduate courses in experimental design and also serves as a practical, hands-on reference for statisticians and researchers across a wide array of subject areas, including biological sciences, engineering, medicine, pharmacology, psychology, and business.