End-zone Water Injection as a Means of Suppressing Knock in a Spark-ignition Engine


Book Description

Summary: An investigation has been made of the effectiveness of water injection into the combustion end zone of a spark-ignition engine cylinder for the suppression of knock. Pressure-time recoreds obtained show that injection of water at 60° B.T.C. on the compression stroke at a water-fuel ratio of 0.3 rendered M-3 fuel as good as S-3 fuel from an antiknock consideration. The optimum crank angle for injection of water into the end zone was found to be critical. As the injection angle was increased beyond the optimum, the quantity of water required to suppress knock increased to 3.6 water-fuel ratio at 132° B.T.C. The water quantity could not be increased beyond 3.6 water-fuel ration because of injection-pump limitations; however, a further increase in the injection angle up to the earliest angle obtainable, which was 20° A.T.C. on the intake stroke, continuously increased the knock intensity. The engine operating conditions of the tests did not simulate those encountered in flight, especially with regard to the operating speed of 570 rpm. For this reason the results should only be regarded as of theoretical importance until further investigation has been made.




Knock Limits in Spark Ignited Direct Injected Engines Using Gasoline/ethanol Blends


Book Description

Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore especially advantageous due to the high heat of vaporization of ethanol. Additionally ethanol blends also display superior chemical resistance to auto-ignition, therefore allowing the further extension of knock limits. An engine with both DI and port fuel injection (PFI) was used to obtain knock onset limits for five gasoline/ethanol blends and different intake air temperatures. Using PFI as a baseline, the amount the intake air needed to be heated in DI to knock at the same conditions as PFI is the effective charge cooling realized and ranges from ~14°C for gasoline to ~49°C for E85. The Livengood-Wu auto-ignition integral in conjunction with the Douad-Eyzat time to auto-ignition correlation was used to predict knock onset. The preexponential factor in the correlation was varied to fit the experimental data. An "Effective Octane Number-ONEFF" is thus obtained for every blend ranging from 97 ONEFF. for gasoline to 115 ONEFF. for E85. ONEFF. captures the chemistry effect on knock and shows that there is little antiknock benefit beyond 30-40% ethanol by volume unless the fuel is used in a DI engine. Using this approach, the anti-knock benefit of charge cooling can also be quantified as an octane number. To achieve that, the ONEFF. calculated for an actual DI operating point including charge cooling effects is compared to the ONEFF. obtained from the auto-ignition integral if the unburned mixture temperature is offset to cancel the charge cooling out. The resulting increase in ONEFF., which can be viewed as an "Evaporative Octane Number" ranges from 5 ONEFF. for gasoline to 18 ONEFF. for E85.







AN EXPERIMENTAL INVESTIGATION ON THE EFFECT OF DUAL COIL IGNITION DISCHARGES ON DILUTE COMBUSTION IN A SPARK IGNITION ENGINE


Book Description

Abstract : Dilute combustion is an effective way to increase part-load efficiencies in a Spark Ignition (SI) engine. However, dilute combustion leads to a slower combustion rate and longer burn durations, which results in higher heat transfer loss. To overcome this, some degree of charge flow enhancement exists in modern engines that improves combustion rate and shortens burn durations. This flow enhancement has an adverse effect on performance of the modern Transistorized Coil Ignition (TCI) system and hence presents a limitation on improving combustion rates. Additionally, dilute combustion has a detrimental effect on combustion stability, wherein a larger variation in engine cycle work is observed from cycle to cycle which degrades engine performance. Improving combustion stability under dilution poses a challenge for the modern single coil ignition system, which is where the motivation lies in this research. This research details the development and instrumentation of a Configurable Dual Coil Ignition (CDCI) system that is later tested on a single cylinder metal engine. The effectiveness of different ignition profiles developed with the CDCI system in extending the dilution limit while maintaining combustion performance and lower cycle-cycle variations, thereby improving fuel conversion efficiency, is investigated. Effects of dilution by excess air and internal (exhaust) residuals on the performance of these ignition profiles are investigated under different operating conditions. In-cylinder flow is enhanced by means of tumble planks installed in the intake port of the engine. The impact of enhanced in-cylinder flow on the capabilities of the developed ignition profiles is also investigated under different conditions. Moreover, effects of different spark plug gap sizes and orientations are also investigated. Although majority of the tests are done with Direct Injection (DI) gasoline, some tests are performed with Port Fuel Injection (PFI) methane to compare the effects of fuel delivery and charge preparation.




Survey of Hydrogen Combustion Properties


Book Description

This literature survey digest of hydrogen-air combustion fundamentals presents data on flame temperature, burning velocity, quenching distance, flammability limits, ignition energy, flame stability, detonation, spontaneous ignition, and explosion limits. The data are assessed, recommended values are given, and relations among various combustion properties are discussed. New material presented includes: theoretical treatment of variation in spontaneous ignition lag with temperature, pressure, and composition, based on reaction kinetics of hydrogen-air composition range for 0.01 to 100 atmospheres and initial temperatures of 0 degrees to 1400 degrees k.