An Experimental Study of Subcooled Flow Boiling at Elevated Pressure in an Annular Flow Channel


Book Description

An experimental setup was developed to study the region of subcooled flow boiling. Multiple studies were carried out to investigate the effects of liquid velocity, pressure, and temperature on the boiling heat transfer of subcooled fluid flowing through a heated annular channel. Water was used as the working fluid and principle of Ohmic heating was used to raise water temperature. The system pressure, heat flux, & mass flux ranged from 101 to 912 kPa, 19 to 155 kW/m2, and 83 to 332 kg/m2-s, respectively. This report contains boiling curves, heat transfer coefficients of various studies and a description of the experimental setup.




Experimental Study on the Subcooled Boiling Flow Via Optical Measurement Techniques


Book Description

A series of experimental work to investigate the subcooled boiling flow in a vertical square upward flow channel is described. As experimental methods, high-speed photography and infrared (IR) thermometry were employed simultaneously. The research scope explored includes (i) measurement issues of fundamental bubble parameters through visualization, (ii) experimental methodology to achieve both enhanced two-phase flow visualization and accurate wall temperature measurement, and (iii) measurement of diverse aspects of bubble dynamics as well as wall heat transfer by applying the verified experimental approach. Before producing the actual data, substantial effort was first made to identify the critical measurement issues of fundamental bubble parameters in a forced convective boiling system. Those issues have never been explicitly addressed in previous studies despite the possibly critical impacts on the experimental results. Thus, a series of systematic experimental investigations was performed to uncover those issues and to verify the errors created by not addressing them, based on which more suitable ways of observing and characterizing such parameters through experiments were discussed. Then, an experimental strategy to achieve high-fidelity optical measurements using both high-speed photography and IR thermometry was established. To attain the goal, the important issues such as test section design, IR thermal imaging issues, visualization strategy, wall temperature tracking method, and experimental validations were extensively addressed. Also, the feasibility of current experimental approach was demonstrated through the subcooled flow boiling experiment. Finally, by employing the experimental strategy established, an experimental investigation of the subcooled boiling flow was conducted. The experiment was performed in a vertical square upward flow channel using refrigerant NovecTM 7000, in which a single nucleation site was purposely activated for a fundamental study of subcooled flow boiling process. The various aspects of bubble behavior under different subcooled flow boiling conditions were examined using both micro- and macroscopic views of high-speed cameras while measuring the wall temperature/heat flux with IR thermometry. Additionally, based on the measurements of various bubble parameters as well as wall heat transfer, relevant relations among those parameters and the underlying mechanisms were intensively discussed. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/155042







Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Convective Flow Boiling


Book Description

This book comprises selected papers from the First International Conference on Convective Flow Boiling. The purpose of the conference is to examine state-of-science and recent developments in technology of flow boiling, i.e., boiling systems which are affected by convective flows.













Convective Boiling and Condensation


Book Description

* Third edition of a well-known and well established text both in industry and for teaching * Fully up-to-date and includes extra problems This book is an aid to heat exchanger design written primarily for design and development engineers in the chemical process, power generation, and refrigeration industries. It provides a comprehensive reference on two-phase flows, boiling, and condensation. The text covers all the latest advances like flows over tube bundles and two-phase heat transfer regarding refrigerants and petrochemicals. Another feature of this third edition is many new problems at chapter ends to enhance its use as a teaching text for graduate and post-graduate courses on two-phase flow and heat transfer. - ;This book is written for practising engineers as a comprehensive reference on two-phase flows, boiling, and condensation. It deals with methods for estimating two-phase flow pressure drops and heat transfer rates. It is a well-known reference book in its third edition and is also used as a text for advanced university courses. Both authors write from practical experience as both are professional engineers. -