Distributed Shared Memory


Book Description

The papers present in this text survey both distributed shared memory (DSM) efforts and commercial DSM systems. The book discusses relevant issues that make the concept of DSM one of the most attractive approaches for building large-scale, high-performance multiprocessor systems. The authors provide a general introduction to the DSM field as well as a broad survey of the basic DSM concepts, mechanisms, design issues, and systems. The book concentrates on basic DSM algorithms, their enhancements, and their performance evaluation. In addition, it details implementations that employ DSM solutions at the software and the hardware level. This guide is a research and development reference that provides state-of-the art information that will be useful to architects, designers, and programmers of DSM systems.



















TreadMarks


Book Description

Abstract: "TreadMarks is a distributed shared memory (DSM) system for standard Unix systems such as SunOS and Ultrix. This paper presents a performance evaluation of TreadMarks running on Ultrix using DECstation- 5000/240's that are connected by a 100-Mbps switch-based ATM LAN and a 10- Mbps Ethernet. Our objective is to determine the efficiency of a user- level DSM implementation on commercially available workstations and operating systems. We achieved good speedups on the 8-processor ATM network for Jacobi (7.4), TSP (7.2), Quicksort (6.3), and ILINK (5.7). For a slightly modified version of Water from the SPLASH benchmark suite, we achieved only moderate speedups (4.0) due to the high communication and synchronization rate. Speedups decline on the 10-Mbps Ethernet (5.5 for Jacobi, 6.5 for TSP, 4.2 for Quicksort, 5.1 for ILINK, and 2.1 for Water), reflecting the bandwidth limitations of the Ethernet. These results support the contention that, with suitable networking technology, DSM is a viable technique for parallel computation on clusters of workstations. To achieve these speedups, TreadMarks goes to great lengths to reduce the amount of communication performed to maintain memory consistency. It uses a lazy implementation of release consistency, and it allows multiple concurrent writers to modify a page, reducing the impact of false sharing. Great care was taken to minimize communication overhead. In particular, on the ATM network, we used a standard low-level protocol, AAL3/4, bypassing the TCP/IP protocol stack. Unix communication overhead, however, remains the main obstacle in the way of better performance for programs like Water. Compared to the Unix communication overhead, memory management cost (both kernel and user level) is small and wire time is negligible."