An Improved Analytic Model for Microdosimeter Response


Book Description

An analytic model used to predict energy deposition fluctuations in a microvolume by ions through direct events is improved to include indirect delta ray events. The new model can now account for the increase in flux at low lineal energy when the ions are of very high energy. Good agreement is obtained between the calculated results and available data for laboratory ion beams. Comparison of GCR (galactic cosmic ray) flux between Shuttle TEPC (tissue equivalent proportional counter) flight data and current calculations draws a different assessment of developmental work required for the GCR transport code (HZETRN) than previously concluded. Shinn, Judy L. and Wilson, John W. and Xapsos, Michael A. Goddard Space Flight Center; Langley Research Center NASA/TP-2001-211040, NAS 1.60:211040, L-18109










Microdosimetry and Its Applications


Book Description

Microdosimetry and Its Applications is an advanced textbook presenting the fundamental concepts and numerical aspects of the absorption of energy by matter exposed to ionizing radiation. It is the only comprehensive work on the subject that can be considered definitive. It provides a deeper understanding of the initial phase of the interaction of ionizing radiation with matter, especially biological matter, and its consequences.










Microdosimetry


Book Description




Microdosimetry


Book Description

Experimental microdosimetry deals with the measurement of charged particle energy deposition in tissue equivalent volumes, ranging in size from nanometres to micrometres. Microdosimetry is employed to improve our understanding of the relationship between radiation energy deposition, the resulting biological effects, and the appropriate quantities to be used in characterizing and quantifying radiation quality. Although many reviews and contributions to the field have been published over the past fifty years, this new book is the first to provide a single, up to date, and easily accessible account of experimental microdosimetry. This book is designed to be used in medical, radiation, and health physics courses and by Master's and PhD students. In addition to serving as an introductory text to the field for graduate students, this book will also be of interest as a teaching and reference resource for graduate supervisors and established researchers. Drs. Lennart Lindborg and Anthony Waker have spent a life-time career in experimental microdosimetry research in academic, industrial and regulatory environments and have observed the development of the field from its early days as a recognized discipline; they bring to this book particular knowledge and experience in the design, construction, operation and use of tissue equivalent gas ionization counters and chambers.