An In-Depth Look at Quantitative Information Fusion Rules


Book Description

This chapter may look like a glossary of the fusion rules and we also introduce new ones presenting their formulas and examples.




An In-Depth Look at Information Fusion Rules and the Unification of Fusion Theories


Book Description

This presentation may look like a glossary of the fusion rules and we also introduce new ones presenting their formulas and examples: Conjunctive, Disjunctive, Exclusive Disjunctive, Mixed Conjunctive-Disjunctive rules, Conditional rule, Dempster's, Yager's, Smets' TBM rule, Dubois-Prade's, Dezert-Smarandache classical and hybrid rules, Murphy's average rule, Inagaki-Lefevre-Colot-Vannoorenberghe Unified Combination rules [and, as particular cases: Iganaki's parameterized rule, Weighting Average Operator, minC (M. Daniel), and newly Proportional Conflict Redistribution rules (SmarandacheDezert) among which PCR5 is the most exact way of redistribution of the conflicting mass to non-empty sets following the path of the conjunctive rule], Zhang's Center Combination rule, Convolutive x-Averaging, Consensus Operator (Josang), Cautious Rule (Smets), α-junctions rules (Smets), etc. and three new T-norm & T-conorm rules adjusted from fuzzy and neutrosophic sets to information fusion (TchamovaSmarandache). Introducing the degree of union and degree of inclusion with respect to the cardinal of sets not with the fuzzy set point of view, besides that of intersection, many fusion rules can be improved.




Advances and Applications of DSmT for Information Fusion (Collected Works. Volume 5)


Book Description

This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well. We want to thank all the contributors of this fifth volume for their research works and their interests in the development of DSmT, and the belief functions. We are grateful as well to other colleagues for encouraging us to edit this fifth volume, and for sharing with us several ideas and for their questions and comments on DSmT through the years. We thank the International Society of Information Fusion (www.isif.org) for diffusing main research works related to information fusion (including DSmT) in the international fusion conferences series over the years. Florentin Smarandache is grateful to The University of New Mexico, U.S.A., that many times partially sponsored him to attend international conferences, workshops and seminars on Information Fusion. Jean Dezert is grateful to the Department of Information Processing and Systems (DTIS) of the French Aerospace Lab (Office National d’E´tudes et de Recherches Ae´rospatiales), Palaiseau, France, for encouraging him to carry on this research and for its financial support. Albena Tchamova is first of all grateful to Dr. Jean Dezert for the opportunity to be involved during more than 20 years to follow and share his smart and beautiful visions and ideas in the development of the powerful Dezert-Smarandache Theory for data fusion. She is also grateful to the Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, for sponsoring her to attend international conferences on Information Fusion.




Advances and Applications of DSmT for Information Fusion, Vol. 3


Book Description

This volume has about 760 pages, split into 25 chapters, from 41 contributors. First part of this book presents advances of Dezert-Smarandache Theory (DSmT) which is becoming one of the most comprehensive and flexible fusion theory based on belief functions. It can work in all fusion spaces: power set, hyper-power set, and super-power set, and has various fusion and conditioning rules that can be applied depending on each application. Some new generalized rules are introduced in this volume with codes for implementing some of them. For the qualitative fusion, the DSm Field and Linear Algebra of Refined Labels (FLARL) is proposed which can convert any numerical fusion rule to a qualitative fusion rule. When one needs to work on a refined frame of discernment, the refinement is done using Smarandache¿s algebraic codification. New interpretations and implementations of the fusion rules based on sampling techniques and referee functions are proposed, including the probabilistic proportional conflict redistribution rule. A new probabilistic transformation of mass of belief is also presented which outperforms the classical pignistic transformation in term of probabilistic information content. The second part of the book presents applications of DSmT in target tracking, in satellite image fusion, in snow-avalanche risk assessment, in multi-biometric match score fusion, in assessment of an attribute information retrieved based on the sensor data or human originated information, in sensor management, in automatic goal allocation for a planetary rover, in computer-aided medical diagnosis, in multiple camera fusion for tracking objects on ground plane, in object identification, in fusion of Electronic Support Measures allegiance report, in map regenerating forest stands, etc.




General Combination Rules for Qualitative and Quantitative Beliefs


Book Description

Martin and Osswald have recently proposed many generalizations of combination rules on quantitative beliefs in order to manage the conflict and to consider the specificity of the responses of the experts. Since the experts express themselves usually in natural language with linguistic labels, Smarandache and Dezert have introduced a mathematical framework for dealing directly also with qualitative beliefs. In this paper we recall some element of our previous works and propose the new combination rules, developed for the fusion of both qualitative or quantitative beliefs.




Unification of Evidence Theoretic Fusion Algorithms: A Case Study in Level-2 and Level-3 Fingerprint Features


Book Description

This paper formulates an evidence-theoretic multimodal unification approach using belief functions that takes into account the variability in biometric image characteristics. While processing non-ideal images the variation in the quality of features at different levels of abstraction may cause individual classifiers to generate conflicting genuine-impostor decisions. Existing fusion approaches are non-adaptive and do not always guarantee optimum performance improvements.




Framework for biometric match score fusion using statistical and belief models


Book Description

This chapter presents a framework for multi-biometric match score fusion when non-ideal conditions cause conflict in the results of different unimodal biometrics classifiers. The proposed framework uses belief function theory to effectively fuse the match scores and density estimation technique to compute the belief assignments.




Neutrosophic Sets and Systems, Vol. 47, 2021


Book Description

Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.




Artificial Intelligence and Soft Computing


Book Description

The two-volume set LNAI 8467 and LNAI 8468 constitutes the refereed proceedings of the 13th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2014, held in Zakopane, Poland in June 2014. The 139 revised full papers presented in the volumes, were carefully reviewed and selected from 331 submissions. The 69 papers included in the first volume are focused on the following topical sections: Neural Networks and Their Applications, Fuzzy Systems and Their Applications, Evolutionary Algorithms and Their Applications, Classification and Estimation, Computer Vision, Image and Speech Analysis and Special Session 3: Intelligent Methods in Databases. The 71 papers in the second volume are organized in the following subjects: Data Mining, Bioinformatics, Biometrics and Medical Applications, Agent Systems, Robotics and Control, Artificial Intelligence in Modeling and Simulation, Various Problems of Artificial Intelligence, Special Session 2: Machine Learning for Visual Information Analysis and Security, Special Session 1: Applications and Properties of Fuzzy Reasoning and Calculus and Clustering.