An Introduction to Algebraic Structures


Book Description

This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.




A Physicists Introduction to Algebraic Structures


Book Description

Algebraic structures including vector space, groups, topological spaces and more, all covered in one volume, showing the mutual connections.




Modern Algebra and the Rise of Mathematical Structures


Book Description

This book describes two stages in the historical development of the notion of mathematical structures: first, it traces its rise in the context of algebra from the mid-1800s to 1930, and then considers attempts to formulate elaborate theories after 1930 aimed at elucidating, from a purely mathematical perspective, the precise meaning of this idea.




Discrete Mathematics and Algebraic Structures


Book Description

Provides a brief but substantial introduction to ideas, structures and techniques in discrete mathematics and abstract algebra. It addresses many of the common mathematical needs of students in mathematics and computer science at undergraduate level.




Introduction to Algebra


Book Description

This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics.




Lattices and Ordered Algebraic Structures


Book Description

"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS




The Algebraic Structure of Group Rings


Book Description

"'Highly recommended' by the Bulletin of the London Mathematical Society, this book offers a comprehensive, self-contained treatment of group rings. The subject involves the intersection of two essentially different disciplines, group theory and ring theory. The Bulletin of the American Mathematical Society hailed this treatment as 'a majestic account,' proclaiming it "encyclopedic and lucid." 1985 edition"--







A Book of Abstract Algebra


Book Description

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.




Introduction · to Mathematical Structures and · Proofs


Book Description

This is a textbook for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, and so on. Without such a "bridge" course, most upper division instructors feel the need to start their courses with the rudiments of logic, set theory, equivalence relations, and other basic mathematical raw materials before getting on with the subject at hand. Students who are new to higher mathematics are often startled to discover that mathematics is a subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create mathematical proofs. Mastery of an assortment of technical tricks may have carried the students through calculus, but it is no longer a guarantee of academic success. Students need experience in working with abstract ideas at a nontrivial level if they are to achieve the sophisticated blend of knowledge, disci pline, and creativity that we call "mathematical maturity. " I don't believe that "theorem-proving" can be taught any more than "question-answering" can be taught. Nevertheless, I have found that it is possible to guide stu dents gently into the process of mathematical proof in such a way that they become comfortable with the experience and begin asking them selves questions that will lead them in the right direction.