Applied Thermodynamics


Book Description

Deals with the availability method and its application to power plant system design and energy conversion. The first part of the book describes the development and the formulation of the availability method. The second part presents its applications to energy conversion processes. Examples for each energy conversion system are introduced and there are practice problems throughout the text.




Thermodynamics and Energy Conversion


Book Description

This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices. Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing and the evaluation of the related work losses. Better use of resources requires high efficiencies therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools. Topics include: car and aircraft engines, including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet; steam and gas power plants, including advanced regenerative systems, solar tower and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic power plants and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes and fuel cells; the microscopic definition of entropy. The book includes about 300 end-of-chapter problems for homework assignments and exams. The material presented suffices for two or three full-term courses on thermodynamics and energy conversion.







Introduction to Applied Thermodynamics


Book Description

Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus on temperature, entropy, and standard air cycles, along with gas compressors, combustion, psychrometry, and the thermodynamic properties of pure substances. Steam and steam engines, internal combustion engines, and refrigeration are also considered. The final chapter is devoted to heat transfer by conduction, radiation, and convection. The transfer of heat energy between fluids flowing through concentric pipes is described. This book will appeal to mechanical engineers and students as well as those interested in applied thermodynamics.




Advanced Thermodynamics for Engineers


Book Description

Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.




Physics of Energy Conversion


Book Description

A profound understanding of the physical laws underlying energy converters is a prerequisite for a sustainable use of our energy resources. The aim of this textbook is to provide a unified view on the different energy conversion processes ranging from power plants to solar cells. It offers an interdisciplinary introduction to energy sciences for senior undergraduate and graduate students from natural sciences and engineering. The central theme is the treatment of energy converters as open thermodynamical systems and the performance of efficiency analyses, based on the concept of exergy. Presents the physics behind the most important energy converters in a unified framework. Evaluates the performance of ideal and realistic energy converters in terms of energy and exergy efficiencies Provides basic concepts needed for a discussion of energy converters, such as chemical and applied thermodynamics, electrochemistry and solid state physics. About the Authors Katharina Krischer is a professor of physics at the Technische Universität München, Germany. She has taught lectures on energy sciences for undergraduate and graduate students for more than 10 years. Her research topics include the photo-electrochemical production of solar fuels. Konrad Schönleber is a researcher in the group of Prof. Krischer which he joined after graduating in physics from the Technische Universität München. His research interest focuses on light-driven semiconductor electrochemistry and its application for renewable energies.




Energy Systems


Book Description

Considered as particularly difficult by generations of students and engineers, thermodynamics applied to energy systems can now be taught with an original instruction method. Energy Systems applies a completely different approach to the calculation, application and theory of multiple energy conversion technologies. It aims to create the reader’s foundation for understanding and applying the design principles to all kinds of energy cycles, including renewable energy. Proven to be simpler and more reflective than existing methods, it deals with energy system modeling, instead of the thermodynamic foundations, as the primary objective. Although its style is drastically different from other textbooks, no concession is done to coverage: with encouraging pace, the complete range from basic thermodynamics to the most advanced energy systems is addressed. The accompanying ThermoptimTM portal (http://direns.mines-paristech.fr/Sites/Thopt/en/co/_Arborescence_web.html) presents the software and manuals (in English and French) to solve over 200 examples, and programming and design tools for exercises of all levels of complexity. The reader is explained how to build appropriate models to bridge the technological reality with the theoretical basis of energy engineering. Offering quick overviews through e-learning modules moreover, the portal is user-friendly and enables to quickly become fully operational. Students can freely download the ThermoptimTM modeling software demo version (in seven languages) and extended options are available to lecturers. A professional edition is also available and has been adopted by many companies and research institutes worldwide - www.thermoptim.org This volume is intended as for courses in applied thermodynamics, energy systems, energy conversion, thermal engineering to senior undergraduate and graduate-level students in mechanical, energy, chemical and petroleum engineering. Students should already have taken a first year course in thermodynamics. The refreshing approach and exceptionally rich coverage make it a great reference tool for researchers and professionals also. Contains International Units (SI).




Exergy Analysis for Energy Conversion Systems


Book Description

Discover a straightforward and holistic look at energy conversion and conservation processes using the exergy concept with this thorough text. Explains the fundamental energy conversion processes in numerous diverse systems, ranging from jet engines and nuclear reactors to human bodies. Provides examples for applications to practical energy conversion processes and systems that use our naturally occurring energy resources, such as fossil fuels, solar energy, wind, geothermal, and nuclear fuels. With more than one-hundred diverse cases and solved examples, readers will be able to perform optimizations for a cleaner environment, a sustainable energy future, and affordable energy generation. An essential tool for practicing scientists and engineers who work or do research in the area of energy and exergy, as well as graduate students and faculty in chemical engineering, mechanical engineering and physics.




Closed Power Cycles


Book Description

With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines operating in accordance with closed cycles is provided to develop ideas and discussions strictly founded on the basic thermodynamic facts that control the closed cycles operation and design. Closed Power Cycles: Thermodynamic Fundamentals and Applications also contains numerous examples which have been carried out with the help of the Aspen Plus®R program. Including chapters on binary cycles, the organic Rankine cycle and real closed gas cycles, Closed Power Cycles: Thermodynamic Fundamentals and Applications acts a solid introduction and reference for post-graduate students and researchers working in applied thermodynamics and energy conversion with thermodynamic engines.




Thermodynamics


Book Description

Provides an essential treatment of the subject and rigorous methods to solve all kinds of energy engineering problems.