An Introduction to Bispectral Analysis and Bilinear Time Series Models


Book Description

The theory of time series models has been well developed over the last thirt,y years. Both the frequenc.y domain and time domain approaches have been widely used in the analysis of linear time series models. However. many physical phenomena cannot be adequately represented by linear models; hence the necessity of nonlinear models and higher order spectra. Recently a number of nonlinear models have been proposed. In this monograph we restrict attention to one particular nonlinear model. known as the "bilinear model". The most interesting feature of such a model is that its second order covariance analysis is ve~ similar to that for a linear model. This demonstrates the importance of higher order covariance analysis for nonlinear models. For bilinear models it is also possible to obtain analytic expressions for covariances. spectra. etc. which are often difficult to obtain for other proposed nonlinear models. Estimation of bispectrum and its use in the construction of tests for linearit,y and symmetry are also discussed. All the methods are illustrated with simulated and real data. The first author would like to acknowledge the benefit he received in the preparation of this monograph from delivering a series of lectures on the topic of bilinear models at the University of Bielefeld. Ecole Normale Superieure. University of Paris (South) and the Mathematisch Cen trum. Ams terdam.




New Introduction to Multiple Time Series Analysis


Book Description

This is the new and totally revised edition of Lütkepohl’s classic 1991 work. It provides a detailed introduction to the main steps of analyzing multiple time series, model specification, estimation, model checking, and for using the models for economic analysis and forecasting. The book now includes new chapters on cointegration analysis, structural vector autoregressions, cointegrated VARMA processes and multivariate ARCH models. The book bridges the gap to the difficult technical literature on the topic. It is accessible to graduate students in business and economics. In addition, multiple time series courses in other fields such as statistics and engineering may be based on it.




Biometrics - Volume I


Book Description

Biometrics is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Biometry is a broad discipline covering all applications of statistics and mathematics to biology. The Theme Biometrics is divided into areas of expertise essential for a proper application of statistical and mathematical methods to contemporary biological problems. These volumes cover four main topics: Data Collection and Analysis, Statistical Methodology, Computation, Biostatistical Methods and Research Design and Selected Topics. These volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.




Stochastic Processes: Modeling and Simulation


Book Description

This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.







Recent Econometric Techniques for Macroeconomic and Financial Data


Book Description

The book provides a comprehensive overview of the latest econometric methods for studying the dynamics of macroeconomic and financial time series. It examines alternative methodological approaches and concepts, including quantile spectra and co-spectra, and explores topics such as non-linear and non-stationary behavior, stochastic volatility models, and the econometrics of commodity markets and globalization. Furthermore, it demonstrates the application of recent techniques in various fields: in the frequency domain, in the analysis of persistent dynamics, in the estimation of state space models and new classes of volatility models. The book is divided into two parts: The first part applies econometrics to the field of macroeconomics, discussing trend/cycle decomposition, growth analysis, monetary policy and international trade. The second part applies econometrics to a wide range of topics in financial economics, including price dynamics in equity, commodity and foreign exchange markets and portfolio analysis. The book is essential reading for scholars, students, and practitioners in government and financial institutions interested in applying recent econometric time series methods to financial and economic data.




Recent Developments in Nonlinear Cointegration with Applications to Macroeconomics and Finance


Book Description

This book is an introductory exposition of different topics that emerged in the literature as unifying themes between two fields of econometrics of time series, namely nonlinearity and nonstationarity. Papers on these topics have exploded over the last two decades, but they are rarely ex amined together. There is, undoubtedly, a variety of arguments that justify such a separation. But there are also good reasons that motivate their combination. People who are reluctant to a combined analysis might argue that nonlinearity and nonstationarity enhance non-trivial problems, so their combination does not stimulate interest in regard to plausibly increased difficulties. This argument can, however, be balanced by other ones of an economic nature. A predominant idea, today, is that a nonstationary series exhibits persistent deviations from its long-run components (either deterministic or stochastic trends). These persistent deviations are modelized in various ways: unit root models, fractionally integrated processes, models with shifts in the time trend, etc. However, there are many other behaviors inherent to nonstationary processes, that are not reflected in linear models. For instance, economic variables with mixture distributions, or processes that are state-dependent, undergo episodes of changing dynamics. In models with multiple long-run equi libria, the moving from an equilibrium to another sometimes implies hys teresis. Also, it is known that certain shocks can change the economic fundamentals, thereby reducing the possibility that an initial position is re-established after a shock (irreversibility).




Probability Models and Statistical Analyses for Ranking Data


Book Description

In June of 1990, a conference was held on Probablity Models and Statisti cal Analyses for Ranking Data, under the joint auspices of the American Mathematical Society, the Institute for Mathematical Statistics, and the Society of Industrial and Applied Mathematicians. The conference took place at the University of Massachusetts, Amherst, and was attended by 36 participants, including statisticians, mathematicians, psychologists and sociologists from the United States, Canada, Israel, Italy, and The Nether lands. There were 18 presentations on a wide variety of topics involving ranking data. This volume is a collection of 14 of these presentations, as well as 5 miscellaneous papers that were contributed by conference participants. We would like to thank Carole Kohanski, summer program coordinator for the American Mathematical Society, for her assistance in arranging the conference; M. Steigerwald for preparing the manuscripts for publication; Martin Gilchrist at Springer-Verlag for editorial advice; and Persi Diaconis for contributing the Foreword. Special thanks go to the anonymous referees for their careful readings and constructive comments. Finally, we thank the National Science Foundation for their sponsorship of the AMS-IMS-SIAM Joint Summer Programs. Contents Preface vii Conference Participants xiii Foreword xvii 1 Ranking Models with Item Covariates 1 D. E. Critchlow and M. A. Fligner 1. 1 Introduction. . . . . . . . . . . . . . . 1 1. 2 Basic Ranking Models and Their Parameters 2 1. 3 Ranking Models with Covariates 8 1. 4 Estimation 9 1. 5 Example. 11 1. 6 Discussion. 14 1. 7 Appendix . 15 1. 8 References.




Business Cycles: Theory and Empirical Methods


Book Description

In macrodynamics and business cycle analysis we find nowadays a variety of approaches elaborating frameworks for studying the fluctuations in economic and financial data. These approaches are viewed from Keynesian, monetarist and rational expectations standpoints. There are now also numerous empirical methods for the testing of nonlinear data generating mechanisms. This volume brings together a selection of contributions on theories of the business cycle and new empirical methods and synopsizes the new results. The volume (i) gives an overview of current models and modern concepts and tools for analyzing the business cycle; (ii) demonstrates, where possible, the relation of those models to the history of business cycle analysis; and (iii) presents current work, surveys and original work, on new empirical methods of studying cycle generating mechanisms.




Nonparametric Functional Estimation and Related Topics


Book Description

About three years ago, an idea was discussed among some colleagues in the Division of Statistics at the University of California, Davis, as to the possibility of holding an international conference, focusing exclusively on nonparametric curve estimation. The fruition of this idea came about with the enthusiastic support of this project by Luc Devroye of McGill University, Canada, and Peter Robinson of the London School of Economics, UK. The response of colleagues, contacted to ascertain interest in participation in such a conference, was gratifying and made the effort involved worthwhile. Devroye and Robinson, together with this editor and George Metakides of the University of Patras, Greece and of the European Economic Communities, Brussels, formed the International Organizing Committee for a two week long Advanced Study Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses between July 29 and August 10, 1990. Nonparametric functional estimation is a central topic in statistics, with applications in numerous substantive fields in mathematics, natural and social sciences, engineering and medicine. While there has been interest in nonparametric functional estimation for many years, this has grown of late, owing to increasing availability of large data sets and the ability to process them by means of improved computing facilities, along with the ability to display the results by means of sophisticated graphical procedures.