An Introduction to Linear and Nonlinear Finite Element Analysis


Book Description

Modern finite element analysis has grown into a basic mathematical tool for almost every field of engineering and the applied sciences. This introductory textbook fills a gap in the literature, offering a concise, integrated presentation of methods, applications, software tools, and hands-on projects. Included are numerous exercises, problems, and Mathematica/Matlab-based programming projects. The emphasis is on interdisciplinary applications to serve a broad audience of advanced undergraduate/graduate students with different backgrounds in applied mathematics, engineering, physics/geophysics. The work may also serve as a self-study reference for researchers and practitioners seeking a quick introduction to the subject for their research.




Boundary Element Methods for Engineers and Scientists


Book Description

This introductory course on the classical Boundary Element Method also contains advanced topics such as the Dual Reciprocity and the Hybrid Boundary Element Methods. The latter methods are extensions that permit the application of BME to anisotropic materials, as well as multi-field problems and fluid-structure interaction. The class-tested textbook offers a clear and easy-to-understand introduction to the subject, including worked-out examples that describe all the basic features of the method. The first two chapters not only establish the mathematical basis for BEM but also review the basics of continuum mechanics for field problems, perhaps a unique feature for a text on numerical methods. This helps the reader to understand the physical principles of the field problems, to apply the method judiciously, and toe critically evaluate the results.




The Boundary Element Method for Engineers and Scientists


Book Description

The Boundary Element Method for Engineers and Scientists: Theory and Applications is a detailed introduction to the principles and use of boundary element method (BEM), enabling this versatile and powerful computational tool to be employed for engineering analysis and design. In this book, Dr. Katsikadelis presents the underlying principles and explains how the BEM equations are formed and numerically solved using only the mathematics and mechanics to which readers will have been exposed during undergraduate studies. All concepts are illustrated with worked examples and problems, helping to put theory into practice and to familiarize the reader with BEM programming through the use of code and programs listed in the book and also available in electronic form on the book's companion website. - Offers an accessible guide to BEM principles and numerical implementation, with worked examples and detailed discussion of practical applications - This second edition features three new chapters, including coverage of the dual reciprocity method (DRM) and analog equation method (AEM), with their application to complicated problems, including time dependent and non-linear problems, as well as problems described by fractional differential equations - Companion website includes source code of all computer programs developed in the book for the solution of a broad range of real-life engineering problems




Programming the Boundary Element Method


Book Description

Providing an easy introduction to the boundary element method, this book is ideal for any reader wishing to work in this field or use this method for the solution of engineering problems. From the beginning, the emphasis is on the implementation of the method into computer programs which can be used to solve real problems. The book covers two-andthree-dimensional linear and non-linear analysis in potential flow (heat flow and seepage) and static elasticity. Several computer programs are listed in the book and may be downloaded free of charge via the Internet. They include programs and subroutines for: * 2-D analysis of potential problems using the Trefftz method * 2-D and 3-D linear analysis of potential and static elasticity problems using isoparametric elements (single and multiple regions) * implementation of non-linear problems * coupling to finite elements The programs (written in FORTRAN 90) are well documented, and can be employed by the user to gain experience with the method through the solution of small test examples. Furthermore, readers may use them as a starting point for developing their own boundary element package. In addition, exercises are included in most chapters involving the use of the programs with answers given in an Appendix, and a number of interesting industrial applications in the areas of mechanical, civil and geotechnical engineering are presented.




Introduction to Finite and Boundary Element Methods for Engineers


Book Description

Uses simple engineering terms to describe which types of problems can best be solved with each method, combining the two and the applications for which this might be suitable. Features a chapter devoted to the construction of finite and boundary element meshes, error analysis and confidence criteria. Contains a slew of practical applications.




The Boundary Element Method with Programming


Book Description

This thorough yet understandable introduction to the boundary element method presents an attractive alternative to the finite element method. It not only explains the theory but also presents the implementation of the theory into computer code, the code in FORTRAN 95 can be freely downloaded. The book also addresses the issue of efficiently using parallel processing hardware in order to considerably speed up the computations for large systems. The applications range from problems of heat and fluid flow to static and dynamic elasto-plastic problems in continuum mechanics.




A Beginner's Course in Boundary Element Methods


Book Description

This is a course in boundary element methods for the absolute beginners. Basic concepts are carefully explained through the use of progressively more complicated boundary value problems in engineering and physical sciences. The readers are assumed to have prior basic knowledge of vector calculus (covering topics such as line, surface and volume integrals and the various integral theorems), ordinary and partial differential equations, complex variables, and computer programming. Electronic ebook edition available at Powells.com. Click on Powells logo to the left.




Boundary Element Methods


Book Description

This work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems in $\mathbb{R}^3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic way.




Fast Multipole Boundary Element Method


Book Description

The fast multipole method is one of the most important algorithms in computing developed in the 20th century. Along with the fast multipole method, the boundary element method (BEM) has also emerged as a powerful method for modeling large-scale problems. BEM models with millions of unknowns on the boundary can now be solved on desktop computers using the fast multipole BEM. This is the first book on the fast multipole BEM, which brings together the classical theories in BEM formulations and the recent development of the fast multipole method. Two- and three-dimensional potential, elastostatic, Stokes flow, and acoustic wave problems are covered, supplemented with exercise problems and computer source codes. Applications in modeling nanocomposite materials, bio-materials, fuel cells, acoustic waves, and image-based simulations are demonstrated to show the potential of the fast multipole BEM. Enables students, researchers, and engineers to learn the BEM and fast multipole method from a single source.




Advanced Boundary Element Methods


Book Description

This book is devoted to the mathematical analysis of the numerical solution of boundary integral equations treating boundary value, transmission and contact problems arising in elasticity, acoustic and electromagnetic scattering. It serves as the mathematical foundation of the boundary element methods (BEM) both for static and dynamic problems. The book presents a systematic approach to the variational methods for boundary integral equations including the treatment with variational inequalities for contact problems. It also features adaptive BEM, hp-version BEM, coupling of finite and boundary element methods – efficient computational tools that have become extremely popular in applications. Familiarizing readers with tools like Mellin transformation and pseudodifferential operators as well as convex and nonsmooth analysis for variational inequalities, it concisely presents efficient, state-of-the-art boundary element approximations and points to up-to-date research. The authors are well known for their fundamental work on boundary elements and related topics, and this book is a major contribution to the modern theory of the BEM (especially for error controlled adaptive methods and for unilateral contact and dynamic problems) and is a valuable resource for applied mathematicians, engineers, scientists and graduate students.