Introduction to Digital Communications


Book Description

Introduction to Digital Communications explores the basic principles in the analysis and design of digital communication systems, including design objectives, constraints and trade-offs. After portraying the big picture and laying the background material, this book lucidly progresses to a comprehensive and detailed discussion of all critical elements and key functions in digital communications. - The first undergraduate-level textbook exclusively on digital communications, with a complete coverage of source and channel coding, modulation, and synchronization. - Discusses major aspects of communication networks and multiuser communications - Provides insightful descriptions and intuitive explanations of all complex concepts - Focuses on practical applications and illustrative examples. - A companion Web site includes solutions to end-of-chapter problems and computer exercises, lecture slides, and figures and tables from the text




An Introduction to Digital Communications


Book Description

The only book available that integrates a realistic design approach with a theoretical approach! This outstanding new book focuses on the central theoretical and practical issues involved in modem design. The first half deals with the basic issues of base-band and passband data transmission and contains descriptions of applications to specific digital transmission systems. The second half specifically addresses design issues including timing and carrier recovery, channel characterization, adaptive equalization, and trellis coding. The author uses simulation programs in Matlab and C to help readers: * Determine the power spectral density of complex data encoding rules * Simulate the performance of passband data transmission techniques * Design and assess the performance of carrier recovery systems * Develop time domain models for a variety of channels * Design and assess the performance of adaptive equalizers * Use existing programs as the framework for creating simulation modules




Introduction to Digital Communication Systems


Book Description

Combining theoretical knowledge and practical applications, this advanced-level textbook covers the most important aspects of contemporary digital communication systems. Introduction to Digital Communication Systems focuses on the rules of functioning digital communication system blocks, starting with the performance limits set by the information theory. Drawing on information relating to turbo codes and LDPC codes, the text presents the basic methods of error correction and detection, followed by baseband transmission methods, and single- and multi-carrier digital modulations. The basic properties of several physical communication channels used in digital communication systems are explained, showing the transmission and reception methods on channels suffering from intersymbol interference. The text also describes the most recent developments in the transmission techniques specific to wireless communications used both in wireline and wireless systems. The case studies are a unique feature of this book, illustrating elements of the theory developed in each chapter. Introduction to Digital Communication Systems provides a concise approach to digital communications, with practical examples and problems to supplement the text. There is also a companion website featuring an instructors’ solutions manual and presentation slides to aid understanding. Offers theoretical and practical knowledge in a self-contained textbook on digital communications Explains basic rules of recent achievements in digital communication systems such as MIMO, turbo codes, LDPC codes, OFDMA, SC-FDMA Provides problems at the end of each chapter with an instructors’ solutions manual on the companion website Includes case studies and representative communication system examples such as DVB-S, GSM, UMTS, 3GPP-LTE




Introduction to Digital Communications


Book Description

This book provides an introduction to the basic concepts in digital communications for readers with little or no previous exposure to either digital or analog communications. The intent is to help learners develop a firm understanding of digital communication system engineering--and to enable them to conduct system-level design and analysis for digital communication systems of the future. As a result, the book emphasizes the basic principles of digital communications theory and techniques, rather than presenting specific technologies for implementation. Chapter topics include probability and random variables--review and notation, introduction to random processes, linear filtering of random processes, frequency-domain analysis of random processes in linear systems, baseband transmission of binary data, coherent communications, noncoherent communications, intersymbol interference, and spread-spectrum communication systems. For individuals preparing for a career in wireless communications system design.




Principles of Digital Communication


Book Description

The renowned communications theorist Robert Gallager brings his lucid writing style to the study of the fundamental system aspects of digital communication for a one-semester course for graduate students. With the clarity and insight that have characterized his teaching and earlier textbooks, he develops a simple framework and then combines this with careful proofs to help the reader understand modern systems and simplified models in an intuitive yet precise way. A strong narrative and links between theory and practice reinforce this concise, practical presentation. The book begins with data compression for arbitrary sources. Gallager then describes how to modulate the resulting binary data for transmission over wires, cables, optical fibers, and wireless channels. Analysis and intuitive interpretations are developed for channel noise models, followed by coverage of the principles of detection, coding, and decoding. The various concepts covered are brought together in a description of wireless communication, using CDMA as a case study.




Introduction to Wireless Digital Communication


Book Description

The Accessible Guide to Modern Wireless Communication for Undergraduates, Graduates, and Practicing Electrical Engineers Wireless communication is a critical discipline of electrical engineering and computer science, yet the concepts have remained elusive for students who are not specialists in the area. This text makes digital communication and receiver algorithms for wireless communication broadly accessible to undergraduates, graduates, and practicing electrical engineers. Notably, the book builds on a signal processing foundation and does not require prior courses on analog or digital communication. Introduction to Wireless Digital Communication establishes the principles of communication, from a digital signal processing perspective, including key mathematical background, transmitter and receiver signal processing algorithms, channel models, and generalizations to multiple antennas. Robert Heath’s “less is more” approach focuses on typical solutions to common problems in wireless engineering. Heath presents digital communication fundamentals from a signal processing perspective, focusing on the complex pulse amplitude modulation approach used in most commercial wireless systems. He describes specific receiver algorithms for implementing wireless communication links, including synchronization, carrier frequency offset estimation, channel estimation, and equalization. While most concepts are presented for systems with single transmit and receive antennas, Heath concludes by extending those concepts to contemporary MIMO systems. To promote learning, each chapter includes previews, bullet-point summaries, examples, and numerous homework problems to help readers test their knowledge. Basics of wireless communication: applications, history, and the central role of signal processing Digital communication essentials: components, channels, distortion, coding/decoding, encryption, and modulation/demodulation Signal processing: linear time invariant systems, probability/random processes, Fourier transforms, derivation of complex baseband signal representation and equivalent channels, and multi-rate signal processing Least-squared estimation techniques that build on the linear algebra typically taught to electrical engineering undergraduates Complex pulse amplitude modulation: symbol mapping, constellations, signal bandwidth, and noise Synchronization, including symbol, frame, and carrier frequency offset Frequency selective channel estimation and equalization MIMO techniques using multiple transmit and/or receive antennas, including SIMO, MISO, and MIMO-OFDM Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available.




Introduction to Digital Signal Processing Using MATLAB with Application to Digital Communications


Book Description

This textbook provides engineering students with instruction on processing signals encountered in speech, music, and wireless communications using software or hardware by employing basic mathematical methods. The book starts with an overview of signal processing, introducing readers to the field. It goes on to give instruction in converting continuous time signals into digital signals and discusses various methods to process the digital signals, such as filtering. The author uses MATLAB throughout as a user-friendly software tool to perform various digital signal processing algorithms and to simulate real-time systems. Readers learn how to convert analog signals into digital signals; how to process these signals using software or hardware; and how to write algorithms to perform useful operations on the acquired signals such as filtering, detecting digitally modulated signals, correcting channel distortions, etc. Students are also shown how to convert MATLAB codes into firmware codes. Further, students will be able to apply the basic digital signal processing techniques in their workplace. The book is based on the author's popular online course at University of California, San Diego.




Digital Communications


Book Description

This text provides an introduction to the analysis and design of digital communication systems. The third edition has been updated with a discussion of modern technological advances, providing coverage of such topics as digital modulation and demodulation techniques, source coding, channel coding and decoding, spread spectrum signals, channel equilization, multiuser communications, and modulation and coding for fading multipath channels. In addition, the book has been reorganized so that each chapter builds on previous material, begins with an introduction to the history and classification of channel models and reviews important topics in probability and stochastic processes.




Digital Communications


Book Description

This is a modern textbook on digital communications and is designed for senior undergraduate and graduate students, whilst also providing a valuable reference for those working in the telecommunications industry. It provides a simple and thorough access to a wide range of topics through use of figures, tables, examples and problem sets. The author provides an integrated approach between RF engineering and statistical theory of communications. Intuitive explanations of the theoretical and practical aspects of telecommunications help the reader to acquire a deeper understanding of the topics. The book covers the fundamentals of antennas, channel modelling, receiver system noise, A/D conversion of signals, PCM, baseband transmission, optimum receiver, modulation techniques, error control coding, OFDM, fading channels, diversity and combining techniques, MIMO systems and cooperative communications. It will be an essential reference for all students and practitioners in the electrical engineering field.




An Introduction to Analog and Digital Communications


Book Description

The second edition of this accessible book provides readers with an introductory treatment of communication theory as applied to the transmission of information-bearing signals. While it covers analog communications, the emphasis is placed on digital technology. It begins by presenting the functional blocks that constitute the transmitter and receiver of a communication system. Readers will next learn about electrical noise and then progress to multiplexing and multiple access techniques.