An Introduction to Investigations and Method Selection for Hardening Levees for Professional Engineers


Book Description

Introductory technical guidance for professional engineers interested in planning and design of levees for rivers, creeks, reservoirs and other waters resources engineering structures. Here is what is discussed: 1. PROJECT REQUIREMENTS AND GENERAL ASSESSMENT, 2. THE ROLE OF GEOMORPHOLOGY IN RIVER PROJECTS, 3. HYDRAULIC ASSESSMENT OF ENERGY, RIVER FORM, AND SHEAR FORCES, 4. TRADITIONAL RIPRAP REVETMENTS, 5. SCOUR ASSESSMENT, 6. SELECTING A BANK STABILIZATION METHOD.




Forensic Engineering


Book Description

Proceedings of the Sixth Congress on Forensic Engineering, held in San Francisco, California, October 31-November 3, 2012. Sponsored by the Technical Council on Forensic Engineering of ASCE. This collection contains 144 peer-reviewed papers presenting findings intended to help forensic engineers develop practices and procedures to reduce the number of failures, disseminate information on failures, and provide guidelines for conducting failure investigations and for ethical conduct. Topics include: bridges; building envelopes; critical infrastructure; design practices; disaster risk management; education; emerging technologies; fires; floods; flooring; geotechnical failures; hurricanes, tornadoes, and extreme winds; investigative methodologies; practices to reduce failures; professional practice; research and testing; residential construction; and structural failures. This will be valuable to engineers, researchers, educators, and students involved in forensic engineering.




Handbook of Geotechnical Investigation and Design Tables


Book Description

This practical handbook of properties for soils and rock contains, in a concise tabular format, the key issues relevant to geotechnical investigations, assessments and designs in common practice. In addition, there are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference document to access key information. There is an extensive database of correlations for different applications. The book should provide a useful bridge between soil and rock mechanics theory and its application to practical engineering solutions. The initial chapters deal with the planning of the geotechnical investigation, the classification of the soil and rock properties and some of the more used testing is then covered. Later chapters show the reliability and correlations that are used to convert that data in the interpretative and assessment phase of the project. The final chapters apply some of these concepts to geotechnical design. This book is intended primarily for practicing geotechnical engineers working in investigation, assessment and design, but should provide a useful supplement for postgraduate courses.




Earth and Rock-Fill Dams


Book Description

This manual presents fundamental principles underlying the design and construction of earth and rock-fill dams. The general principles presented herein are also applicable to the design and construction of earth levees.







Em 385-1-1


Book Description

The manual describes safety and health requirements for all Corps of Engineers activities and operations, including Naval Facilities Engineering Command (NAVFAC) construction contracts. Following this manual will help all contractors working on DoD projects to meet all of the necessary safety requirements to ensure success on any current and future Federal projects.




A Failure of Initiative


Book Description




The Deep Mixing Method


Book Description

The Deep Mixing Method (DMM), a deep in-situ soil stabilization technique using cement and/or lime as a stabilizing agent, was developed in Japan and in the Nordic countries independently in the 1970s. Numerous research efforts have been made in these areas investigating properties of treated soil, behavior of DMM improved ground under static and d







Urban Stormwater Management in the United States


Book Description

The rapid conversion of land to urban and suburban areas has profoundly altered how water flows during and following storm events, putting higher volumes of water and more pollutants into the nation's rivers, lakes, and estuaries. These changes have degraded water quality and habitat in virtually every urban stream system. The Clean Water Act regulatory framework for addressing sewage and industrial wastes is not well suited to the more difficult problem of stormwater discharges. This book calls for an entirely new permitting structure that would put authority and accountability for stormwater discharges at the municipal level. A number of additional actions, such as conserving natural areas, reducing hard surface cover (e.g., roads and parking lots), and retrofitting urban areas with features that hold and treat stormwater, are recommended.