An Introduction To Mathematical Billiards


Book Description

'This book offers one of the few places where a collection of results from the literature can be found … The book has an extensive bibliography … It is very nice to have the compendium of results that is presented here.'zbMATHA mathematical billiard is a mechanical system consisting of a billiard ball on a table of any form (which can be planar or even a multidimensional domain) but without billiard pockets. The ball moves and its trajectory is defined by the ball's initial position and its initial speed vector. The ball's reflections from the boundary of the table are assumed to have the property that the reflection and incidence angles are the same. This book comprehensively presents known results on the behavior of a trajectory of a billiard ball on a planar table (having one of the following forms: circle, ellipse, triangle, rectangle, polygon and some general convex domains). It provides a systematic review of the theory of dynamical systems, with a concise presentation of billiards in elementary mathematics and simple billiards related to geometry and physics.The description of these trajectories leads to the solution of various questions in mathematics and mechanics: problems related to liquid transfusion, lighting of mirror rooms, crushing of stones in a kidney, collisions of gas particles, etc. The analysis of billiard trajectories can involve methods of geometry, dynamical systems, and ergodic theory, as well as methods of theoretical physics and mechanics, which has applications in the fields of biology, mathematics, medicine, and physics.




Chaotic Billiards


Book Description

This book covers one of the most exciting but most difficult topics in the modern theory of dynamical systems: chaotic billiards. In physics, billiard models describe various mechanical processes, molecular dynamics, and optical phenomena. The theory of chaotic billiards has made remarkable progress in the past thirty-five years, but it remains notoriously difficult for the beginner, with main results scattered in hardly accessible research articles. This is the first and so faronly book that covers all the fundamental facts about chaotic billiards in a complete and systematic manner. The book contains all the necessary definitions, full proofs of all the main theorems, and many examples and illustrations that help the reader to understand the material. Hundreds of carefullydesigned exercises allow the reader not only to become familiar with chaotic billiards but to master the subject. The book addresses graduate students and young researchers in physics and mathematics. Prerequisites include standard graduate courses in measure theory, probability, Riemannian geometry, topology, and complex analysis. Some of this material is summarized in the appendices to the book.




Poncelet Porisms and Beyond


Book Description

The goal of the book is to present, in a complete and comprehensive way, areas of current research interlacing around the Poncelet porism: dynamics of integrable billiards, algebraic geometry of hyperelliptic Jacobians, and classical projective geometry of pencils of quadrics. The most important results and ideas, classical as well as modern, connected to the Poncelet theorem are presented, together with a historical overview analyzing the classical ideas and their natural generalizations. Special attention is paid to the realization of the Griffiths and Harris programme about Poncelet-type problems and addition theorems. This programme, formulated three decades ago, is aimed to understanding the higher-dimensional analogues of Poncelet problems and the realization of the synthetic approach of higher genus addition theorems.




Billiards


Book Description




Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts


Book Description

Starting with the work of G D Birkhoff, billiards have been a popular research topic drawing on such areas as ergodic theory, Morse theory, and KAM theory. Billiard systems are also remarkable in that they arise naturally in a number of important problems of mechanics and physics. This book is devoted to mathematical aspects of the theory of dynamical systems of billiard type. Focusing on the genetic approach, the authors strive to clarify the genesis of the basic ideas and concepts of the theory of dynamical systems with impact intereactions and also to demonstrate that these methods are natural and effective. Recent limit theorems, which justify various mathematical models of impact theory, are key features. Questions of existence and stability of periodic trajectories of elastic billiards occupy a special place in the book, and considerable attention is devoted to integrable billiards. A brief survey is given of work on billiards with ergodic behaviour. Each chapter ends with a list of problems.




Geometry and Billiards


Book Description

Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. Topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course. Minimum prerequisites are the standard material covered in the first two years of college mathematics (the entire calculus sequence, linear algebra). However, readers should show some mathematical maturity and rely on their mathematical common sense. A unique feature of the book is the coverage of many diverse topics related to billiards, for example, evolutes and involutes of plane curves, the four-vertex theorem, a mathematical theory of rainbows, distribution of first digits in various sequences, Morse theory, the Poincare recurrence theorem, Hilbert's fourth problem, Poncelet porism, and many others. There are approximately 100 illustrations. The book is suitable for advanced undergraduates, graduate students, and researchers interested in ergodic theory and geometry. This volume has been copublished with the Mathematics Advanced Study Semesters program at Penn State.







Illustrating Mathematics


Book Description

This book is for anyone who wishes to illustrate their mathematical ideas, which in our experience means everyone. It is organized by material, rather than by subject area, and purposefully emphasizes the process of creating things, including discussions of failures that occurred along the way. As a result, the reader can learn from the experiences of those who came before, and will be inspired to create their own illustrations. Topics illustrated within include prime numbers, fractals, the Klein bottle, Borromean rings, tilings, space-filling curves, knot theory, billiards, complex dynamics, algebraic surfaces, groups and prime ideals, the Riemann zeta function, quadratic fields, hyperbolic space, and hyperbolic 3-manifolds. Everyone who opens this book should find a type of mathematics with which they identify. Each contributor explains the mathematics behind their illustration at an accessible level, so that all readers can appreciate the beauty of both the object itself and the mathematics behind it.




Mathematical Omnibus


Book Description

The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an accomplished artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.




Mathematics and Sports


Book Description

`Some scientists claim that strong tobacco and spirits clear the head and spur creativity. It would be well, however, to try other means: to exercise, jog, swim, or learn to play games like tennis, basketball, badminton, volleyball, and so on ... Not only checkers, chess, cards, or billiards are a source of interesting problems. Other sports provide them as well. Mathematical methods are increasingly applied in sports. Just think how many yet-unsolved problems arise when we study the interaction between ball and racket or between ball and court.' ---from the introduction. This unique book presents simple mathematicals models of various aspects of sports, with applications to sports training and competitions. Requiring only a background in precalculus, it would be suitable as a textbook for courses in mathematical modeling and operations research at the high school or college level. Coaches and those who do sports will find it interesting as well. The lively writing style and wide range of topics make this book especially appealing.