An Introduction to Probability and Stochastic Processes


Book Description

These notes were written as a result of my having taught a "nonmeasure theoretic" course in probability and stochastic processes a few times at the Weizmann Institute in Israel. I have tried to follow two principles. The first is to prove things "probabilistically" whenever possible without recourse to other branches of mathematics and in a notation that is as "probabilistic" as possible. Thus, for example, the asymptotics of pn for large n, where P is a stochastic matrix, is developed in Section V by using passage probabilities and hitting times rather than, say, pulling in Perron Frobenius theory or spectral analysis. Similarly in Section II the joint normal distribution is studied through conditional expectation rather than quadratic forms. The second principle I have tried to follow is to only prove results in their simple forms and to try to eliminate any minor technical com putations from proofs, so as to expose the most important steps. Steps in proofs or derivations that involve algebra or basic calculus are not shown; only steps involving, say, the use of independence or a dominated convergence argument or an assumptjon in a theorem are displayed. For example, in proving inversion formulas for characteristic functions I omit steps involving evaluation of basic trigonometric integrals and display details only where use is made of Fubini's Theorem or the Dominated Convergence Theorem.




An Introduction to Probability and Stochastic Processes


Book Description

Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.




Introduction to Probability and Stochastic Processes with Applications


Book Description

An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basic concepts of probability to advanced topics for further study, including Itô integrals, martingales, and sigma algebras. Additional topical coverage includes: Distributions of discrete and continuous random variables frequently used in applications Random vectors, conditional probability, expectation, and multivariate normal distributions The laws of large numbers, limit theorems, and convergence of sequences of random variables Stochastic processes and related applications, particularly in queueing systems Financial mathematics, including pricing methods such as risk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisite mathematics and tables of standard distributions for use in applications are provided, and plentiful exercises, problems, and solutions are found throughout. Also, a related website features additional exercises with solutions and supplementary material for classroom use. Introduction to Probability and Stochastic Processes with Applications is an ideal book for probability courses at the upper-undergraduate level. The book is also a valuable reference for researchers and practitioners in the fields of engineering, operations research, and computer science who conduct data analysis to make decisions in their everyday work.




Introduction to Probability, Statistics, and Random Processes


Book Description

The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.




Probability and Stochastic Processes


Book Description

This text introduces engineering students to probability theory and stochastic processes. Along with thorough mathematical development of the subject, the book presents intuitive explanations of key points in order to give students the insights they need to apply math to practical engineering problems. The first five chapters contain the core material that is essential to any introductory course. In one-semester undergraduate courses, instructors can select material from the remaining chapters to meet their individual goals. Graduate courses can cover all chapters in one semester.




Introduction to Probability Theory and Stochastic Processes


Book Description

A unique approach to stochastic processes that connects the mathematical formulation of random processes to their use in applications This book presents an innovative approach to teaching probability theory and stochastic processes based on the binary expansion of the unit interval. Departing from standard pedagogy, it uses the binary expansion of the unit interval to explicitly construct an infinite sequence of independent random variables (of any given distribution) on a single probability space. This construction then provides the framework to understand the mathematical formulation of probability theory for its use in applications. Features include: The theory is presented first for countable sample spaces (Chapters 1-3) and then for uncountable sample spaces (Chapters 4-18) Coverage of the explicit construction of i.i.d. random variables on a single probability space to explain why it is the distribution function rather than the functional form of random variables that matters when it comes to modeling random phenomena Explicit construction of continuous random variables to facilitate the "digestion" of random variables, i.e., how they are used in contrast to how they are defined Explicit construction of continuous random variables to facilitate the two views of expectation: as integration over the underlying probability space (abstract view) or as integration using the density function (usual view) A discussion of the connections between Bernoulli, geometric, and Poisson processes Incorporation of the Johnson-Nyquist noise model and an explanation of why (and when) it is valid to use a delta function to model its autocovariance Comprehensive, astute, and practical, Introduction to Probability Theory and Stochastic Processes is a clear presentation of essential topics for those studying communications, control, machine learning, digital signal processing, computer networks, pattern recognition, image processing, and coding theory.




Probability and Stochastic Processes


Book Description

An intuitive, algorithmic approach to probability and stochastic processes.




Functional Analysis for Probability and Stochastic Processes


Book Description

This text presents selected areas of functional analysis that can facilitate an understanding of ideas in probability and stochastic processes. Topics covered include basic Hilbert and Banach spaces, weak topologies and Banach algebras, and the theory ofsemigroups of bounded linear operators.




Introduction to Stochastic Processes with R


Book Description

An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.




Applied Probability and Stochastic Processes


Book Description

In this book, Feldman and Valdez-Flores present applied probability and stochastic processes in an elementary but mathematically precise manner, with numerous examples and exercises to illustrate the range of engineering and science applications for the concepts. The book is designed to give the reader an intuitive understanding of probabilistic reasoning, in addition to an understanding of mathematical concepts and principles. Unique features of the book include a self-contained chapter on simulation (Chapter 3) and early introduction of Markov chains.