An Introduction to Radiation Chemistry


Book Description

This text on radiation chemistry covers a number of topics, including the development of radiation chemistry, sources of high-energy radiation, dosimetry, organic materials and solids and the applications of high-energy radiation in chemical synthesis and in commercial processes.




Fundamentals of Radiation Chemistry


Book Description

This book describes the physical and chemical effects of radiation interaction with matter. Beginning with the physical basis for the absorption of charged particle radiations, Fundamentals of Radiation Chemistry provides a systematic account of the formation of products, including the nature and properties of intermediate species. Developed from first principles, the coverage of fundamentals and applications will appeal to an interdisciplinary audience of radiation physicists and radiation biologists. Only an undergraduate background in chemistry and physics is assumed as a prerequisite for the understanding of applications in research and industry. - Provides a working knowledge of radiation effects for students and non-experts - Stresses the role of the electron both as a radiation and as a reactant species - Contains clear diagrams of track models - Includes a chapter on applications - Written by an expert with more than thirty years of experience in a premiere research laboratory - Culled from the author's painstaking research of journals and other publications over several decades




Molecules and Radiation


Book Description

This unified treatment introduces upper-level undergraduates and graduate students to the concepts and methods of modern molecular spectroscopy and their applications to quantum electronics, lasers, and related optical phenomena. Starting with a review of the prerequisite quantum mechanical background, the text examines atomic spectra and diatomic molecules, including the rotation and vibration of diatomic molecules and their electronic spectra. A discussion of rudimentary group theory advances to considerations of the rotational spectra of polyatomic molecules and their vibrational and electronic spectra; molecular beams, masers, and lasers; and a variety of forms of spectroscopy, including optical resonance spectroscopy, coherent transient spectroscopy, multiple-photon spectroscopy, and spectroscopy beyond molecular constants. The text concludes with a series of useful appendixes.




Radiochemistry and Nuclear Chemistry


Book Description

Origin of Nuclear Science; Nuclei, Isotopes and Isotope Separation; Nuclear Mass and Stability; Unstable Nuclei and Radioactive Decay; Radionuclides in Nature; Absorption of Nuclear Radiation; Radiation Effects on Matter; Detection and Measurement Techniques; Uses of Radioactive Tracers; Cosmic Radiation and Elementary Particles; Nuclear Structure; Energetics of Nuclear Reactions; Particle Accelerators; Mechanics and Models of Nuclear Reactions; Production of Radionuclides; The Transuranium Elements; Thermonuclear Reactions: the Beginning and the Future; Radiation Biology and Radiation Protection; Principles of Nuclear Power; Nuclear Power Reactors; Nuclear Fuel Cycle; Behavior of Radionuclides in the Environment; Appendices; Solvent Extraction Separations; Answers to Exercises; Isotope Chart; Periodic Table of the Elements; Quantities and Units; Fundamental Constants; Energy Conversion Factors; Element and Nuclide Index; Subject Index.




Radiation Chemistry of Organic Compounds


Book Description

Radiation Effects in Materials, Volume 2: Radiation Chemistry of Organic Compounds provides information pertinent to the fundamental aspects of radiation chemistry of organic compounds. This book reviews the published work on the radiation chemistry of organic compounds. Organized into nine chapters, this volume begins with an overview of the study of the chemical reactions produced by high-energy radiation. This text then explores the two groups of radiation sources, namely, natural and artificial, that have been equally valuable for radiation chemistry. Other chapters consider the radiation chemistry of water and aqueous systems that is important to organic radiation chemistry. This book discusses as well how radiation alters simple organic compounds, and how the response varies with the irradiation conditions and the presence of other substances. The final chapter deals with the economic aspects of the use of radiation sources in industry. This book is a valuable resource for radiation chemists.




The Radiation Chemistry of Macromolecules


Book Description

The Radiation Chemistry of Macromolecules is the first from a two-volume series aiming to contribute to the radiation chemistry in general. The chapters in this volume are divided into two major parts, where the first part deals with the basic processes and theory, while the second part tackles experimental techniques and applications to polyethylene. Part I focuses on the discussion on general principles of radiation effects; fundamental concepts on energy transfer; and the theory of free radicals. The subject of polymers is discussed thoroughly in several chapters including its molecular mobilities and electrical conductivity. Part II presents experimental techniques and a description of the radiation chemistry of a single polymer. This part also includes a discussion on the morphology of polyethylene and free radicals in irradiated polyethylene. This book is an important reference to students and scientists in the field of radiation chemistry of macromolecules.




An Introduction to Synchrotron Radiation


Book Description

This book introduces the reader to the basic concepts of the generation and manipulation of synchrotron light, its interaction with matter, and the application of synchrotron light in the “classical” techniques, while including some of the most modern technological developments. As much as possible, complicated mathematical derivations and formulas are avoided. A more heuristic approach is adopted, whereby the general physical reasoning behind the equations is highlighted. Key features: A general introduction to synchrotron radiation and experimental techniques using synchrotron radiation Contains many detailed “worked examples” from the literature Of interest for a broad audience - synchrotrons are possibly one of the best examples of multidisciplinary research Four-colour presentation throughout




Recent Trends in Radiation Chemistry


Book Description

This volume is a review of the trends in the field of radiation chemistry research. It covers a broad spectrum of topics, ranging from the historical perspective, instrumentation of accelerators in the nanosecond to femtosecond region, through the use of radiation chemical methods in the study of antioxidants and nanomaterials, radiation-induced DNA damage by ionizing radiation involving both direct and indirect effects, to ultrafast events in free electron transfer, radiation-induced processes at solid-liquid interfaces and the recent work on infrared spectroscopy and radiation chemistry. The book is unique in that it covers a wide spectrum of topics that will be of great interest to beginners as well as experts. Recent data on ultrafast phenomena from the recently established world-class laser-driven accelerators facilities in the US, France and Japan are reviewed.




Molecular Quantum Electrodynamics


Book Description

Self-contained, systematic introduction examines application of quantum electrodynamics to interpretation of optical experiments on atoms and molecules and explains the quantum theory of electromagnetic radiation and its interaction with matter.




An Introduction to Radiobiology


Book Description

This new edition of A.H.W. Nias' successful book provides an updated and revised introduction to quantitative radiobiology, particularly, to those aspects of the subject which have a practical application. Radiation is used to cure cancer but can also cause it. Radiation is also used in medical diagnosis and in nuclear power stations. In these areas, where questions of benefit and detriment arise, the biological effects of the radiation can now be predicted. There are few aspects of life where risk estimates are so firmly founded on quantitative data. This is not only because of the precision with which radiation dose can be measured but also because of the large body of radiobiological observations which have been made since X-rays were discovered. Written by a scientist with many years experience in the field, An Introduction to Radiobiology will appeal to a wide variety of readers who need to understand the mechanisms by which ionizing radiation causes cellular damage. It will be of interest to technologists in radiation therapy, nuclear medicine and diagnostic radiography, cancer research students and technicians, medical physicists, trainee radiotherapists and nuclear medicine specialists. Reviews of the First Edition: "In summary, this is an excellent general text that should fill an important gap in many teaching needs, especially those where the major focus is on the biological effects of radiation on humans." Journal of the National Cancer Institute "This is undoubtedly one of the better introductions to the subject which I have read, and I would certainly recommend it not only to beginners but also to mature students of the subject." The British Journal of Radiology