An Introduction to Reliability and Maintainability Engineering


Book Description

Many books on reliability focus on either modeling or statistical analysis and require an extensive background in probability and statistics. Continuing its tradition of excellence as an introductory text for those with limited formal education in the subject, this classroom-tested book introduces the necessary concepts in probability and statistics within the context of their application to reliability. The Third Edition adds brief discussions of the Anderson-Darling test, the Cox proportionate hazards model, the Accelerated Failure Time model, and Monte Carlo simulation. Over 80 new end-of-chapter exercises have been added, as well as solutions to all odd-numbered exercises. Moreover, Excel workbooks, available for download, save students from performing numerous tedious calculations and allow them to focus on reliability concepts. Ebeling has created an exceptional text that enables readers to learn how to analyze failure, repair data, and derive appropriate models for reliability and maintainability as well as apply those models to all levels of design.




Reliability, Maintainability and Risk


Book Description

Reliability, Maintainability and Risk: Practical Methods for Engineers, Eighth Edition, discusses tools and techniques for reliable and safe engineering, and for optimizing maintenance strategies. It emphasizes the importance of using reliability techniques to identify and eliminate potential failures early in the design cycle. The focus is on techniques known as RAMS (reliability, availability, maintainability, and safety-integrity). The book is organized into five parts. Part 1 on reliability parameters and costs traces the history of reliability and safety technology and presents a cost-effective approach to quality, reliability, and safety. Part 2 deals with the interpretation of failure rates, while Part 3 focuses on the prediction of reliability and risk. Part 4 discusses design and assurance techniques; review and testing techniques; reliability growth modeling; field data collection and feedback; predicting and demonstrating repair times; quantified reliability maintenance; and systematic failures. Part 5 deals with legal, management and safety issues, such as project management, product liability, and safety legislation. - 8th edition of this core reference for engineers who deal with the design or operation of any safety critical systems, processes or operations - Answers the question: how can a defect that costs less than $1000 dollars to identify at the process design stage be prevented from escalating to a $100,000 field defect, or a $1m+ catastrophe - Revised throughout, with new examples, and standards, including must have material on the new edition of global functional safety standard IEC 61508, which launches in 2010




Reliability Engineering


Book Description

Using clear language, this book shows you how to build in, evaluate, and demonstrate reliability and availability of components, equipment, and systems. It presents the state of the art in theory and practice, and is based on the author's 30 years' experience, half in industry and half as professor of reliability engineering at the ETH, Zurich. In this extended edition, new models and considerations have been added for reliability data analysis and fault tolerant reconfigurable repairable systems including reward and frequency / duration aspects. New design rules for imperfect switching, incomplete coverage, items with more than 2 states, and phased-mission systems, as well as a Monte Carlo approach useful for rare events are given. Trends in quality management are outlined. Methods and tools are given in such a way that they can be tailored to cover different reliability requirement levels and be used to investigate safety as well. The book contains a large number of tables, figures, and examples to support the practical aspects.




Introduction to Maintenance Engineering


Book Description

This introductory textbook links theory with practice using real illustrative cases involving products, plants and infrastructures and exposes the student to the evolutionary trends in maintenance. Provides an interdisciplinary approach which links, engineering, science, technology, mathematical modelling, data collection and analysis, economics and management Blends theory with practice illustrated through examples relating to products, plants and infrastructures Focuses on concepts, tools and techniques Identifies the special management requirements of various engineered objects (products, plants, and infrastructures)




Reliability, Quality, and Safety for Engineers


Book Description

Due to global competition, safety regulations, and other factors, manufacturers are increasingly pressed to create products that are safe, highly reliable, and of high quality. Engineers and quality assurance professionals need a cross-disciplinary understanding of these topics in order to ensure high standards in the design and manufacturing proce




Engineering Maintainability:


Book Description

This book provides the guidelines and fundamental methods of estimation and calculation needed by maintainability engineers. It also covers the management of maintainability efforts, including issues of organizational structure, cost, and planning processes. Questions and problems conclude each chapter.




Applied Reliability Engineering


Book Description




Reliability, Maintainability, and Supportability


Book Description

Focuses on the core systems engineering tasks of writing, managing, and tracking requirements for reliability, maintainability, and supportability that are most likely to satisfy customers and lead to success for suppliers This book helps systems engineers lead the development of systems and services whose reliability, maintainability, and supportability meet and exceed the expectations of their customers and promote success and profit for their suppliers. This book is organized into three major parts: reliability, maintainability, and supportability engineering. Within each part, there is material on requirements development, quantitative modelling, statistical analysis, and best practices in each of these areas. Heavy emphasis is placed on correct use of language. The author discusses the use of various sustainability engineering methods and techniques in crafting requirements that are focused on the customers’ needs, unambiguous, easily understood by the requirements’ stakeholders, and verifiable. Part of each major division of the book is devoted to statistical analyses needed to determine when requirements are being met by systems operating in customer environments. To further support systems engineers in writing, analyzing, and interpreting sustainability requirements, this book also Contains “Language Tips” to help systems engineers learn the different languages spoken by specialists and non-specialists in the sustainability disciplines Provides exercises in each chapter, allowing the reader to try out some of the ideas and procedures presented in the chapter Delivers end-of-chapter summaries of the current reliability, maintainability, and supportability engineering best practices for systems engineers Reliability, Maintainability, and Supportability is a reference for systems engineers and graduate students hoping to learn how to effectively determine and develop appropriate requirements so that designers may fulfil the intent of the customer.




Reliability-Based Design in Soil and Rock Engineering


Book Description

This book contains probabilistic analyses and reliability-based designs (RBDs) for the enhancement of Eurocode 7 (EC7) and load and resistance factor design (LRFD) methods. An intuitive perspective and efficient computational procedure for the first-order reliability method (FORM, which includes the Hasofer–Lind reliability index) is explained, together with discussions on the similarities and differences between the design point of EC7/LRFD and RBD-via-FORM. Probability-based designs with respect to the ultimate and serviceability limit states are demonstrated for soil and rock engineering, including shallow and deep foundations, earth-retaining structures, soil slopes, 2D rock slopes with discontinuities, 3D rock slopes with wedge mechanisms, and underground rock excavations. Renowned cases in soil and rock engineering are analyzed both deterministically and probabilistically, and comparisons are made with other probabilistic methods. This book is ideal for practitioners, graduate students and researchers and all who want to deepen their understanding of geotechnical RBD accounting for uncertainty and overcome some limitations and potential pitfalls of the evolving LRFD and EC7. Solutions for the book’s examples are available online and are helpful to acquire a hands-on appreciation: https://www.routledge.com/9780367631390.




Practical Reliability Engineering


Book Description

This classic textbook/reference contains a complete integration of the processes which influence quality and reliability in product specification, design, test, manufacture and support. Provides a step-by-step explanation of proven techniques for the development and production of reliable engineering equipment as well as details of the highly regarded work of Taguchi and Shainin. New to this edition: over 75 pages of self-assessment questions plus a revised bibliography and references. The book fulfills the requirements of the qualifying examinations in reliability engineering of the Institute of Quality Assurance, UK and the American Society of Quality Control.