An Introduction to SOLIDWORKS Flow Simulation 2016


Book Description

An Introduction to SOLIDWORKS Flow Simulation 2016 takes you through the steps of creating the SOLIDWORKS part for the simulation followed by the setup and calculation of the SOLIDWORKS Flow Simulation project. The results from calculations are visualized and compared with theoretical solutions and empirical data. Each chapter starts with the objectives and a description of the specific problems that are studied. End of chapter exercises are included for reinforcement and practice of what has been learned. The fourteen chapters of this book are directed towards first-time to intermediate level users of SOLIDWORKS Flow Simulation. It is intended to be a supplement to undergraduate Fluid Mechanics and Heat Transfer related courses. This book can also be used to show students the capabilities of fluid flow and heat transfer simulations in freshman and sophomore courses such as Introduction to Engineering. Both internal and external flow problems are covered and compared with experimental results and analytical solutions. Covered topics include airfoil flow, boundary layers, flow meters, heat exchanger, natural and forced convection, pipe flow, rotating flow, tube bank flow and valve flow.




An Introduction to SOLIDWORKS Flow Simulation 2019


Book Description

An Introduction to SOLIDWORKS Flow Simulation 2019 takes you through the steps of creating the SOLIDWORKS part for the simulation followed by the setup and calculation of the SOLIDWORKS Flow Simulation project. The results from calculations are visualized and compared with theoretical solutions and empirical data. Each chapter starts with the objectives and a description of the specific problems that are studied. End of chapter exercises are included for reinforcement and practice of what has been learned. The fourteen chapters of this book are directed towards first-time to intermediate level users of SOLIDWORKS Flow Simulation. It is intended to be a supplement to undergraduate Fluid Mechanics and Heat Transfer related courses. This book can also be used to show students the capabilities of fluid flow and heat transfer simulations in freshman and sophomore courses such as Introduction to Engineering. Both internal and external flow problems are covered and compared with experimental results and analytical solutions. Covered topics include airfoil flow, boundary layers, flow meters, heat exchanger, natural and forced convection, pipe flow, rotating flow, tube bank flow and valve flow.




An Introduction to SOLIDWORKS Flow Simulation 2018


Book Description

An Introduction to SOLIDWORKS Flow Simulation 2018 takes you through the steps of creating the SOLIDWORKS part for the simulation followed by the setup and calculation of the SOLIDWORKS Flow Simulation project. The results from calculations are visualized and compared with theoretical solutions and empirical data. Each chapter starts with the objectives and a description of the specific problems that are studied. End of chapter exercises are included for reinforcement and practice of what has been learned. The fourteen chapters of this book are directed towards first-time to intermediate level users of SOLIDWORKS Flow Simulation. It is intended to be a supplement to undergraduate Fluid Mechanics and Heat Transfer related courses. This book can also be used to show students the capabilities of fluid flow and heat transfer simulations in freshman and sophomore courses such as Introduction to Engineering. Both internal and external flow problems are covered and compared with experimental results and analytical solutions. Covered topics include airfoil flow, boundary layers, flow meters, heat exchanger, natural and forced convection, pipe flow, rotating flow, tube bank flow and valve flow.




An Introduction to SolidWorks Flow Simulation 2012


Book Description

An Introduction to SolidWorks Flow Simulation 2012 takes you through the steps of creating the SolidWorks part for the simulation followed by the setup and calculation of the SolidWorks Flow Simulation project. The results from calculations are visualized and compared with theoretical solutions and empirical data. Each chapter starts with the objectives and a description of the specific problems that are studied. End of chapter exercises are included for reinforcement and practice of what has been learned. The thirteen chapters of this book are directed towards first-time to intermediate level users of SolidWorks Flow Simulation. It is intended to be a supplement to undergraduate Fluid Mechanics and Heat Transfer related courses. This book can also be used to show students the capabilities of fluid flow and heat transfer simulations in freshman and sophomore courses such as Introduction to Engineering. Both internal and external flow problems are covered and compared with experimental results and analytical solutions. Covered topics include airfoil flow, boundary layers, flow meters, heat exchanger, natural and forced convection, pipe flow, rotating flow, tube bank flow and valve flow.




An Introduction to SOLIDWORKS Flow Simulation 2021


Book Description

An Introduction to SOLIDWORKS Flow Simulation 2021 takes you through the steps of creating the SOLIDWORKS part for the simulation followed by the setup and calculation of the SOLIDWORKS Flow Simulation project. The results from calculations are visualized and compared with theoretical solutions and empirical data. Each chapter starts with the objectives and a description of the specific problems that are studied. End of chapter exercises are included for reinforcement and practice of what has been learned. The fourteen chapters of this book are directed towards first-time to intermediate level users of SOLIDWORKS Flow Simulation. It is intended to be a supplement to undergraduate Fluid Mechanics and Heat Transfer related courses. This book can also be used to show students the capabilities of fluid flow and heat transfer simulations in freshman and sophomore courses such as Introduction to Engineering. Both internal and external flow problems are covered and compared with experimental results and analytical solutions. Covered topics include airfoil flow, boundary layers, flow meters, heat exchanger, natural and forced convection, pipe flow, rotating flow, tube bank flow and valve flow. Covers these feature of SOLIDWORKS Flow Simulation 2021: Animations Automatic and Manual Meshing Boundary Conditions Calculation Control Options External and Internal Flow Goals Laminar and Turbulent Flow Physical Features Result Visualizations Two and Three Dimensional Flow Velocity, Thermodynamic and Turbulence Parameters Wall Thermal Conditions Free Surfaces




Introduction to Finite Element Analysis Using SolidWorks Simulation 2011


Book Description

The primary goal of Introduction to Finite Element Analysis Using SolidWorks Simulation 2011 is to introduce the aspects of Finite Element Analysis (FEA) that are important to engineers and designers. Theoretical aspects of Finite Element Analysis are also introduced as they are needed to help better understand the operation. The primary emphasis of the text is placed on the practical concepts and procedures needed to use SolidWorks Simulation in performing Linear Static Stress Analysis and basic Model Analysis. This text covers SolidWorks Simulation and the lessons proceed in a pedagogical fashion to guide you from constructing basic truss elements to generating three-dimensional solid elements from solid models. This text takes a hands-on, exercise-intensive approach to all the important Finite Element Analysis techniques and concepts. This textbook contains a series of thirteen tutorial style lessons designed to introduce beginning FEA users to SolidWorks Simulation. The basic premise of this book is that the more designs you create using SolidWorks Simulation, the better you learn the software. With this in mind, each lesson introduces a new set of commands and concepts, building on previous lessons.




Finite Element Analysis Concepts


Book Description

Young engineers are often required to utilize commercial finite element software without having had a course on finite element theory. That can lead to computer-aided design errors. This book outlines the basic theory, with a minimum of mathematics, and how its phases are structured within a typical software. The importance of estimating a solution, or verifying the results, by other means is emphasized and illustrated. The book also demonstrates the common processes for utilizing the typical graphical icon interfaces in commercial codes. in particular, the book uses and covers the widely utilized SolidWorks solid modeling and simulation system to demonstrate applications in heat transfer, stress analysis, vibrations, buckling, and other fields. The book, with its detailed applications, will appeal to upper-level undergraduates as well as engineers new to industry.




Analysis of Machine Elements Using SOLIDWORKS Simulation 2022


Book Description

Analysis of Machine Elements Using SOLIDWORKS Simulation 2022 is written primarily for first-time SOLIDWORKS Simulation 2022 users who wish to understand finite element analysis capabilities applicable to stress analysis of mechanical elements. The focus of examples is on problems commonly found in introductory, undergraduate, Design of Machine Elements or similarly named courses. In order to be compatible with most machine design textbooks, this text begins with problems that can be solved with a basic understanding of mechanics of materials. Problem types quickly migrate to include states of stress found in more specialized situations common to a design of mechanical elements course. Paralleling this progression of problem types, each chapter introduces new software concepts and capabilities. Many examples are accompanied by problem solutions based on use of classical equations for stress determination. Unlike many step-by-step user guides that only list a succession of steps, which if followed correctly lead to successful solution of a problem, this text attempts to provide insight into why each step is performed. This approach amplifies two fundamental tenets of this text. The first is that a better understanding of course topics related to stress determination is realized when classical methods and finite element solutions are considered together. The second tenet is that finite element solutions should always be verified by checking, whether by classical stress equations or experimentation. Each chapter begins with a list of learning objectives related to specific capabilities of the SOLIDWORKS Simulation program introduced in that chapter. Most software capabilities are repeated in subsequent examples so that users gain familiarity with their purpose and are capable of using them in future problems. All end-of-chapter problems are accompanied by evaluation "check sheets" to facilitate grading assignments.




Up and Running with Autodesk Inventor Simulation 2010


Book Description

Inventor Simulation is an essential part of the Autodesk Digital Prototyping process. It allows engineers and designers to explore and test components and products virtually, visualizing and simulating real-world performance. Up and Running with Autodesk Inventor Simulation 2010 is dedicated to the requirements of Inventor users who need to quickly learn or refresh their skills, and apply the dynamic simulation, assembly analysis and optimization capabilities of Inventor Simulation 2010. - Step-by-step approach gets you up and running fast - Discover how to convert CAD models to working digital prototypes, enabling you to enhance designs, reduce over design, failure, and the need to create physical prototypes - Extensive real-world design problems explore all the new and key features of the 2010 software, including assembly stress analysis; parametric optimization analysis; creating joints effectively; avoiding redundant joints; unknown force; logic conditions; and more... - Tips and guidance you to tackle your own design challenges with confidence




Engineering Analysis with SOLIDWORKS Simulation 2017


Book Description

Engineering Analysis with SOLIDWORKS Simulation 2017 goes beyond the standard software manual. Its unique approach concurrently introduces you to the SOLIDWORKS Simulation 2017 software and the fundamentals of Finite Element Analysis (FEA) through hands-on exercises. A number of projects are presented using commonly used parts to illustrate the analysis features of SOLIDWORKS Simulation. Each chapter is designed to build on the skills, experiences and understanding gained from the previous chapters.