An Introduction to the Boltzmann Equation and Transport Processes in Gases


Book Description

This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.




An Introduction to the Theory of the Boltzmann Equation


Book Description

This introductory graduate-level course for students of physics and engineering features detailed presentations of Boltzmann's equation, including applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes physical aspects of the theory and offers a practical resource for researchers and other professionals. 1971 edition.




Kinetic Processes in Gases and Plasmas


Book Description

Kinetic Processes in Gases and Plasmas provides a survey of studies on transport and chemical kinetic processes in high temperature gases and plasmas. The book is concerned with conditions produced by the interaction of an object with the atmosphere at hypersonic velocities. The text also provides a foundation for the flow field equations which include chemical reactions and other transport processes, and to present in some detail the microscopic considerations underlying these calculations. Chapters are devoted to the discussion of topics such as the molecular theory of transport equations; transport processes in ionized gases; and inelastic energy transfer processes and chemical kinetics. Aerospace engineers, physicists, chemists, and astrophysicists will find the book a good reference material.




The Boltzmann Equation and Its Applications


Book Description

Statistical mechanics may be naturally divided into two branches, one dealing with equilibrium systems, the other with nonequilibrium systems. The equilibrium properties of macroscopic systems are defined in principle by suitable averages in well-defined Gibbs's ensembles. This provides a frame work for both qualitative understanding and quantitative approximations to equilibrium behaviour. Nonequilibrium phenomena are much less understood at the present time. A notable exception is offered by the case of dilute gases. Here a basic equation was established by Ludwig Boltzmann in 1872. The Boltzmann equation still forms the basis for the kinetic theory of gases and has proved fruitful not only for a study of the classical gases Boltzmann had in mind but also, properly generalized, for studying electron transport in solids and plasmas, neutron transport in nuclear reactors, phonon transport in superfluids, and radiative transfer in planetary and stellar atmospheres. Research in both the new fields and the old one has undergone a considerable advance in the last thirty years.




Generalized Boltzmann Physical Kinetics


Book Description

The most important result obtained by Prof. B. Alexeev and reflected in the book is connected with new theory of transport processes in gases, plasma and liquids. It was shown by Prof. B. Alexeev that well-known Boltzmann equation, which is the basement of the classical kinetic theory, is wrong in the definite sense. Namely in the Boltzmann equation should be introduced the additional terms which generally speaking are of the same order of value as classical ones. It leads to dramatic changing in transport theory. The coincidence of experimental and theoretical data became much better. Particularly it leads to the strict theory of turbulence and possibility to calculate the turbulent flows from the first principles of physics. · Boltzmann equation (BE) is valid only for particles, which can be considered as material points, generalized Boltzmann equation (GBE) removes this restriction.· GBE contains additional terms in comparison with BE, which cannot be omitted· GBE leads to strict theory of turbulence· GBE gives all micro-scale turbulent fluctuations in tabulated closed analytical form for all flows · GBE leads to generalization of electro-dynamic Maxwell equations· GBE gives new generalized hydrodynamic equations (GHE) more effective than classic Navier-Stokes equations· GBE can be applied for description of flows for intermediate diapason of Knudsen numbers· Asymptotical solutions of GBE remove contradictions in the theory of Landau damping in plasma




The Boltzmann Equation


Book Description

In,1872, Boltzmann published a paper which for the first time provided a precise mathematical basis for a discussion of the approach to equilibrium. The paper dealt with the approach to equilibrium of a dilute gas and was based on an equation - the Boltzmann equation, as we call it now - for the velocity distribution function of such ~ gas. The Boltzmann equation still forms the basis of the kinetic theory of gases and has proved fruitful not only for the classical gases Boltzmann had in mind, but als- if properly generalized - for the electron gas in a solid and the excitation gas in a superfluid. Therefore it was felt by many of us that the Boltzmann equation was of sufficient interest, even today, to warrant a meeting, in which a review of its present status would be undertaken. Since Boltzmann had spent a good part of his life in Vienna, this city seemed to be a natural setting for such a meeting. The first day was devoted to historical lectures, since it was generally felt that apart from their general interest, they would furnish a good introduction to the subsequent scientific sessions. We are very much indebted to Dr. D.




Irreversible Processes


Book Description

Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's "H-theorem" and a discussion of this theorem, along with the problem of irreversibility. Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and statistical mechanics. Energy dissipation, the statistical nature of the second law of thermodynamics, and the eternal return and the recurrence paradox are also considered. The first chapter examines the dynamical theory of gases and its application to the explanation of various properties of gases; the known chemical relation between the density of a gas and its equivalent weight, commonly called the Law of Equivalent Volumes; and the diffusion of one gas through another. Subsequent chapters focus on the thermal equilibrium of gas molecules; the three-body problem and the equations of dynamics; the mechanical theory of heat; and the relation of a general mechanical theorem to the second law of thermodynamics. A mechanical explanation of irreversible processes is also offered. This book will be useful for students of physics at the advanced undergraduate or beginning postgraduate level.










Kinetic Theory


Book Description

Kinetic Theory, Volume 3: The Chapman-Enskog Solution of the Transport Equation for Moderately Dense Gases describes the Chapman-Enskog solution of the transport equation for moderately dense gases. Topics covered range from the propagation of sound in monatomic gases to the kinetic theory of simple and composite monatomic gases and generalizations of the theory to higher densities. The application of kinetic theory to the determination of intermolecular forces is also discussed. This volume is divided into two sections and begins with an introduction to the work of Hilbert, Chapman, and Enskog that led to the formulation of the Chapman-Enskog theory. The Chapman-Enskog results are then compared with those of earlier theories with respect to viscosity, heat conduction, diffusion, and thermal diffusion. Subsequent chapters focus on alternatives to the Chapman-Enskog method and some mathematical problems; foundations of the kinetic theory of gases; and kinetic theory of processes in dilute gases and of heat conduction, viscosity, and self-diffusion in compressed gases and liquids. This book should be of interest to graduate students and others undertaking research in kinetic theory.