Quantum Chemistry of Solids


Book Description

This book delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of wave-function-based, density-based (DFT) and hybrid hamiltonians. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties.




Quantum Chemistry of Solids


Book Description

Quantum Chemistry of Solids delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of Hartree-Fock(HF), Density Function theory(DFT) and hybrid Hamiltonians. The translation and site symmetry consideration is included to establish connection between k-space solid –state physics and real-space quantum chemistry. The inclusion of electron correlation effects for periodic systems is considered on the basis of localized crystalline orbitals. The possibilities of LCAO methods for chemical bonding analysis in periodic systems are discussed. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties, including magnetic ordering and crystal structure optimization. In the second edition two new chapters are added in the application part II of the book. Chapter 12 deals with the recent LCAO calculations and illustrates the efficiency of the scalar-relativistic LCAO method for solids, containing heavy atoms. Chapter 13 deals with the symmetry properties and the recent applications of LCAO method to inorganic nanotubes. New material is added to chapter 9 devoted to LCAO calculations of perfect-crystal properties. The possibilities of LCAO method for calculation of the high-frequency dielectric constants of crystals and the description of phase transitions in solids are discussed. The efficiency of LCAO method in the quantum-mechanics-molecular dynamics approach to the interpretation of x-ray absorption and EXAFS spectra is illustrated. A new section is devoted to recent LCAO calculations of electronic, vibrational and magnetic properties of tungstates MeWO4 (Me: Fe,Co,Ni,Cu,Zn,Cd).




Introduction to the Physics of Electrons in Solids


Book Description

This textbook sets out to enable readers to understand fundamental aspects underlying quantum macroscopic phenomena in solids, primarily through the modern experimental techniques and results. The classic independent-electrons approach for describing the electronic structure in terms of energy bands helps explain the occurrence of metals, insulators and semiconductors. It is underlined that superconductivity and magnetism can only be understood by taking into account the interactions between electrons. The text recounts the experimental observations that have revealed the main properties of the superconductors and were essential to track its physical origin. While fundamental concepts are underlined, those which are required to describe the high technology applications, present or future, are emphasized as well. Problem sets involve experimental approaches and tools which support a practical understanding of the materials and their behaviour.




Quantum Theory of the Solid State


Book Description

"Quantum Physics of the Solid State: an Introduction" Draft foreword: 26/09/03 If only this book had been available when I was starting out in science! It would have saved me countless hours of struggle in trying to apply the general ideas of the standard solid-state text-books to solve real problems. The fact is that most of the texts stop at the point where the real difficulties begin. The great merit of this book is that it describes in an honest and detailed way what one really has to do in order to understand the multifarious properties of solids in terms of the fundamental physical theory of quantum mechanics. University students of the physical sciences are taught about the fundamental the ories, and know that quantum mechanics, together with relativity, is our basis for understanding the physical world. But the practical difficulties of using quantum mechanics to do anything useful are usually not very well explained. The truth is that the application of quantum theory to achieve our present detailed understand ing of solids has required the development of a large array of mathematical tech niques. This is closely analogous to the challenge faced long ago by theoretical astronomers in trying to apply Newton's equations of motion to the heavens -they too had to develop a battery of theoretical and computational techniques to do cal culations that could be compared with observation.







Electronic Structure and the Properties of Solids


Book Description

This text offers basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals and their compounds; also explains how to calculate dielectric, conducting, bonding properties.




An Introduction to Quantum Physics


Book Description

This modern textbook offers an introduction to Quantum Mechanics as a theory that underlies the world around us, from atoms and molecules to materials, lasers, and other applications. The main features of the book are: Emphasis on the key principles with minimal mathematical formalism Demystifying discussions of the basic features of quantum systems, using dimensional analysis and order-of-magnitude estimates to develop intuition Comprehensive overview of the key concepts of quantum chemistry and the electronic structure of solids Extensive discussion of the basic processes and applications of light-matter interactions Online supplement with advanced theory, multiple-choice quizzes, etc.




Modern Quantum Chemistry


Book Description

This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.




Introduction to the Thermodynamics of Solids


Book Description

Bridging a gap in the literature, Professor Ericksen has drawn on his experience in research on solids to devise a series of lectures for graduates that introduce and illustrate uses of various important ideas with analysis which can be done using elementary mathematics. Simple strategies are discussed for thermoelastic bars and an ideal gas-solid mixture. Illustrative examples of thermodynamic stability theory include rudimentary analysis of cold-drawing in polymers, martensitic transformations in plates, instabilities in rubber balloons and sheets, peeling tapes, breaking bars, buckling of beams and instabilities produced by electromagnetic fields in liquid crystals. Non-equilibrium theory is illustrated by head conduction in rigid and deformable bars, including a fairly common way of using the Clausius-Duhem inequality to obtain thermodynamic restrictions on constitutive equations. Also covered is some elementary one-dimensional theory of shock waves and slower-moving phase boundaries. Finally, drawing on all these experiences, the last chapter treats general ideas in a more abstract way.