An Introduction to Thermomechanics


Book Description

North-Holland Series in Applied Mathematics and Mechanics, Volume 21: An Introduction to Thermomechanics, Second Revised Edition focuses on the methodologies, reactions, and processes involved in thermomechanics, including kinematics, thermodynamics, elasticity, and tensors. The book first offers information on kinematics, kinetics, and thermodynamics. Discussions focus on field theory, state variables, momentum theorems, state of stress, energy theorem, state of motion, small displacements, and material derivatives. The manuscript then ponders on material properties, ideal liquids, linear elasticity, and inviscid gases. The text elaborates on viscous fluids, plastic bodies, viscoelasticity, and general tensors. Topics include tensor algebra, mechanical constitutive relations, thermomechanical extension, hereditary integrals, perfectly plastic bodies, turbulence, and basic equations. The book then reviews viscoelastic bodies, plasticity, non-Newtonian liquids, and maximal dissipation. The publication is a valuable reference for researchers wanting to dig deeper into thermomechanics.




An Introduction to Thermomechanics


Book Description




Introduction to the Thermodynamics of Solids


Book Description

Bridging a gap in the literature, Professor Ericksen has drawn on his experience in research on solids to devise a series of lectures for graduates that introduce and illustrate uses of various important ideas with analysis which can be done using elementary mathematics. Simple strategies are discussed for thermoelastic bars and an ideal gas-solid mixture. Illustrative examples of thermodynamic stability theory include rudimentary analysis of cold-drawing in polymers, martensitic transformations in plates, instabilities in rubber balloons and sheets, peeling tapes, breaking bars, buckling of beams and instabilities produced by electromagnetic fields in liquid crystals. Non-equilibrium theory is illustrated by head conduction in rigid and deformable bars, including a fairly common way of using the Clausius-Duhem inequality to obtain thermodynamic restrictions on constitutive equations. Also covered is some elementary one-dimensional theory of shock waves and slower-moving phase boundaries. Finally, drawing on all these experiences, the last chapter treats general ideas in a more abstract way.




Thermomechanics


Book Description




Introduction to Thermal and Fluids Engineering


Book Description

This innovative book uses unifying themes so that the boundaries between thermodynamics, heat transfer, and fluid mechanics become transparent. It begins with an introduction to the numerous engineering applications that may require the integration of principles and tools from these disciplines. The authors then present an in-depth examination of the three disciplines, providing readers with the necessary background to solve various engineering problems. The remaining chapters delve into the topics in more detail and rigor. Numerous practical engineering applications are mentioned throughout to illustrate where and when certain equations, concepts, and topics are needed. A comprehensive introduction to thermodynamics, fluid mechanics, and heat transfer, this title: Develops governing equations and approaches in sufficient detail, showing how the equations are based on fundamental conservation laws and other basic concepts. Explains the physics of processes and phenomena with language and examples that have been seen and used in everyday life. Integrates the presentation of the three subjects with common notation, examples, and problems. Demonstrates how to solve any problem in a systematic, logical manner. Presents material appropriate for an introductory level course on thermodynamics, heat transfer, and fluid mechanics.




Introduction to Thermodynamics


Book Description

As the title implies, this book provides an introduction to thermodynamics for students on degree and HND courses in engineering. These courses are placing increased emphasis on business, design, management, and manufacture. As a consequence, the direct class-time for thermodynamics is being reduced and students are encouraged to self learn. This book has been written with this in mind. The text is brief and to the point, with a minimum of mathematical content. Each chapter defines a list of aims and concludes with a short summary. The summary provides an overview of the key words, phrases and equations introduced within the chapter. It is recognized that students see thermodynamics as a problem-solving activity and this is reflected by the emphasis on the modelling of situations. As a guide to problem solving, worked examples are included throughout the book. In addition, students are encouraged to work through the problems at the end of each chapter, for which outline solutions are provided. There is a certain timelessness about thermodynamics because the funda mentals do not change. However, there is currently some debate over which sign convention should apply to work entering, or leaving, a thermodynamic system. I have retained the traditional convention of work out of a system being positive. This fits in with the concept of a heat engine as a device that takes in heat and, as a result, produces positive work.




The Thermomechanics of Nonlinear Irreversible Behaviors


Book Description

In this invaluable book, macroscopic irreversible thermodynamics is presented in its realm and its splendor by appealing to the notion of internal variables of state. This applies to both fluids and solids with or without microstructures of mechanical or electromagnetic origin. This unmatched richness of essentially nonlinear behaviors is the result of the use of modern mathematical techniques such as convex analysis in a clear-cut framework which allows one to put under the umbrella of ?irreversible thermodynamics? behaviors which until now have been commonly considered either not easily covered, or even impossible to incorporate into such a framework.The book is intended for all students and researchers whose main concern is the rational modeling of complex and/or new materials with physical and engineering applications, such as those accounting for coupled-field, hysteresis, fracture, nonlinear-diffusion, and phase-transformation phenomena.




Thermomechanics of Continua


Book Description

The notion of continuum thermodynamics, adopted in this book, is primarily understood as a strategy for development of continuous models of various physical systems. The examples of such a strategy presented in the book have both the classical character (e. g. thermoelastic materials, viscous fluids, mixtures) and the extended one (ideal gases, Maxwellian fluids, thermoviscoelastic solids etc. ). The latter has been limited intentionally to non-relativistic models; many important relativistic applications of the true extended thermodynamics will not be considered but can be found in the other sources. The notion of extended thermodynamics is also adopted in a less strict sense than suggested by the founders. For instance, in some cases we allow the constitutive dependence not only on the fields themselves but also on some derivatives. In this way, the new thermodynamical models may have some features of the usual nonequilibrium models and some of those of the extended models. This deviation from the strategy of extended thermodynamics is motivated by practical aspects; frequently the technical considerations of extended thermodynamics are so involved that one can no longer see important physical properties of the systems. This book has a different form from that usually found in books on continuum mechanics and continuum thermodynamics. The presentation of the formal structure of continuum thermodynamics is not always as rigorous as a mathematician might anticipate and the choice of physical subjects is too disperse to make a physicist happy.




The Mechanics and Thermodynamics of Continua


Book Description

The Mechanics and Thermodynamics of Continua presents a unified treatment of continuum mechanics and thermodynamics that emphasises the universal status of the basic balances and the entropy imbalance. These laws are viewed as fundamental building blocks on which to frame theories of material behaviour. As a valuable reference source, this book presents a detailed and complete treatment of continuum mechanics and thermodynamics for graduates and advanced undergraduates in engineering, physics and mathematics. The chapters on plasticity discuss the standard isotropic theories and, in addition, crystal plasticity and gradient plasticity.




The Finite Element Method in Thermomechanics


Book Description

The rapid advances in the nuclear and aerospace technologies in the past two decades compounded with the increasing demands for high performance, energy-efficient power plant components and engines have made reliable thermal stress analysis a critical factor in the design and operation of such equipment. Recently, and as experienced by the author, the need for sophis ticated analyses has been extended to the energy resource industry such as in-situ coal gasification and in-situ oil recovery from oil sands and shales. The analyses in the above applications are of a multidisciplinary nature, and some involve the additional complexity of multiphase and phase change phenomena. These extremely complicated factors preclude the use of classical methods, and numerical techniques such as the finite element method appear to be the most viable alternative solution. The development of this technique so far appears to have concentrated in two extremes; one being overly concerned with the accuracy of results and tending to place all effort in the implementation of special purpose element concepts and computational algorithms, the other being for commercial purposes with the ability of solving a wide range of engineering problems. However, to be versatile, users require substantial training and experience in order to use these codes effectively. Above all, no provision for any modifi cation of these codes by users is possible, as all these codes are proprietary and access to the code is limited only to the owners.