Vibration Control for Building Structures


Book Description

This book presents a comprehensive introduction to the field of structural vibration reduction control, but may also be used as a reference source for more advanced topics. The content is divided into four main parts: the basic principles of structural vibration reduction control, structural vibration reduction devices, structural vibration reduction design methods, and structural vibration reduction engineering practices. As the book strikes a balance between theoretical and practical aspects, it will appeal to researchers and practicing engineers alike, as well as graduate students.




An Introduction to Vibration Control in Buildings


Book Description

Introductory technical guidance for professional engineers, architects and construction managers interested in vibration control in buildings. Here is what is discussed: 1. VIBRATION CRITERIA 2. VIBRATION ISOLATION ELEMENTS 3. VIBRATION CONTROL 4. TABLES OF RECOMMENDED VIBRATION ISOLATION DETAILS 5. VIBRATION ISOLATION – MISCELLANEOUS.




Active Control of Vibration


Book Description

This book is a companion text to Active Control of Sound by P.A. Nelson and S.J. Elliott, also published by Academic Press. It summarizes the principles underlying active vibration control and its practical applications by combining material from vibrations, mechanics, signal processing, acoustics, and control theory. The emphasis of the book is on the active control of waves in structures, the active isolation of vibrations, the use of distributed strain actuators and sensors, and the active control of structurally radiated sound. The feedforward control of deterministic disturbances, the active control of structural waves and the active isolation of vibrations are covered in detail, as well as the more conventional work on modal feedback. The principles of the transducers used as actuateors and sensors for such control strategies are also given an in-depth description. The reader will find particularly interesting the two chapters on the active control of sound radiation from structures: active structural acoustic control. The reason for controlling high frequency vibration is often to prevent sound radiation, and the principles and practical application of such techniques are presented here for both plates and cylinders. The volume is written in textbook style and is aimed at students, practicing engineers, and researchers. - Combines material from vibrations, signal processing, mechanics, and controls - Summarizes new research in the field




Intelligent Vibration Control in Civil Engineering Structures


Book Description

Intelligent Vibration Control in Civil Engineering Structures provides readers with an all-encompassing view of the theoretical studies, design methods, real-world implementations, and applications relevant to the topic The book focuses on design and property tests on different intelligent control devices, innovative control strategies, analysis examples for structures with intelligent control devices, and designs and tests for intelligent controllers. - Focuses on the principles, methods, and applications of intelligent vibration control in civil engineering - Covers intelligent control, including active and semi-active control - Includes comprehensive contents, such as design and properties of different intelligent control devices, control strategies, and dynamic analysis, intelligent controller design, numerical examples, and experimental data




Passive and Active Structural Vibration Control in Civil Engineering


Book Description

Base isolation, passive energy dissipation and active control represent three innovative technologies for protection of structures under environmental loads. Increasingly, they are being applied to the design of new structures or to the retrofit of existing structures against wind, earthquakes and other external loads. This book, with contributions from leading researchers from Japan, Europe, and the United States, presents a balanced view of current research and world-wide development in this exciting and fast expanding field. Basic principles as well as practical design and implementational issues associated with the application of base isolation systems and passive and active control devices to civil engineering structures are carefully addressed. Examples of structural applications are presented and extensively discussed.




An Introduction to Noise and Vibrations Control in Buildings


Book Description

Introductory technical guidance for mechanical engineers and other professional engineers, architects and construction managers interested in noise and vibrations control in buildings. Here is what is discussed: 1. FUNDAMENTALS OF ACOUSTICS AND VIBRATIONS 2. EQUIPMENT VIBRATIONS AND SEISMIC LOADS 3. NOISE CONTROL IN BUILDINGS 4. SOUND LEVEL DATA FOR MECHANICAL/ELECTRICAL EQUIPMENT.




Vibration Control of Active Structures


Book Description

My objective in writing this book was to cross the bridge between the structural dynamics and control communities, while providing an overview of the potential of SMART materials for sensing and actuating purposes in active vibration c- trol. I wanted to keep it relatively simple and focused on systems which worked. This resulted in the following: (i) I restricted the text to fundamental concepts and left aside most advanced ones (i.e. robust control) whose usefulness had not yet clearly been established for the application at hand. (ii) I promoted the use of collocated actuator/sensor pairs whose potential, I thought, was strongly underestimated by the control community. (iii) I emphasized control laws with guaranteed stability for active damping (the wide-ranging applications of the IFF are particularly impressive). (iv) I tried to explain why an accurate pred- tion of the transmission zeros (usually called anti-resonances by the structural dynamicists) is so important in evaluating the performance of a control system. (v) I emphasized the fact that the open-loop zeros are more difficult to predict than the poles, and that they could be strongly influenced by the model trun- tion (high frequency dynamics) or by local effects (such as membrane strains in piezoelectric shells), especially for nearly collocated distributed actuator/sensor pairs; this effect alone explains many disappointments in active control systems.




Building Acoustics and Vibration


Book Description

As a comprehensive reference dedicated to sound and vibration in buildings, Building Acoustics and Vibration addresses the basic and advanced principles that can be used to solve practical and theoretical problems typically encountered in building and architectural acoustic practices. In addition, physical and mathematical concepts are introduced and developed sufficiently to make this publication a self-contained and up-to-date source of information for readers. Building Acoustics and Vibration is a must-have textbook for engineering students, engineers, and consultants involved in the sound, vibrations and building environment. With comprehensibility and versatility in the presentation of knowledge, this highly anticipated publication will easily fill the gap in the literature of building engineering and sciences, which presently lacks an authoritative guide on the theoretical and practical aspects of building acoustics and vibration.




Handbook of Noise and Vibration Control


Book Description

Two of the most acclaimed reference works in the area of acoustics in recent years have been our Encyclopedia of Acoustics, 4 Volume set and the Handbook of Acoustics spin-off. These works, edited by Malcolm Crocker, positioned Wiley as a major player in the acoustics reference market. With our recently published revision of Beranek & Ver's Noise and Vibration Control Engineering, Wiley is a highly respected name in the acoustics business. Crocker's new handbook covers an area of great importance to engineers and designers. Noise and vibration control is one largest areas of application of the acoustics topics covered in the successful encyclopedia and handbook. It is also an area that has been under-published in recent years. Crocker has positioned this reference to cover the gamut of topics while focusing more on the applications to industrial needs. In this way the book will become the best single source of need-to-know information for the professional markets.




Active Control of Structures


Book Description

With Active Control of Structures, two global pioneers present the state-of-the-art in the theory, design and application of active vibration control. As the demand for high performance structural systems increases, so will the demand for information and innovation in structural vibration control; this book provides an effective treatise of the subject that will meet this requirement. The authors introduce active vibration control through the use of smart materials and structures, semi-active control devices and a variety of feedback options; they then discuss topics including methods and devices in civil structures, modal analysis, active control of high-rise buildings and bridge towers, active tendon control of cable structures, and active and semi-active isolation in mechanical structures. Active Control of Structures: Discusses new types of vibration control methods and devices, including the newly developed reduced-order physical modelling method for structural control; Introduces triple high-rise buildings connected by active control bridges as devised by Professor Seto; Offers a design strategy from modelling to controller design for flexible structures; Makes prolific use of practical examples and figures to describe the topics and technology in an intelligible manner.