An Introductory Course on Mathematical Game Theory


Book Description

Game theory provides a mathematical setting for analyzing competition and cooperation in interactive situations. The theory has been famously applied in economics, but is relevant in many other sciences, such as political science, biology, and, more recently, computer science. This book presents an introductory and up-to-date course on game theory addressed to mathematicians and economists, and to other scientists having a basic mathematical background. The book is self-contained, providing a formal description of the classic game-theoretic concepts together with rigorous proofs of the main results in the field. The theory is illustrated through abundant examples, applications, and exercises. The style is distinctively concise, while offering motivations and interpretations of the theory to make the book accessible to a wide readership. The basic concepts and results of game theory are given a formal treatment, and the mathematical tools necessary to develop them are carefully presented. Cooperative games are explained in detail, with bargaining and TU-games being treated as part of a general framework. The authors stress the relation between game theory and operations research. The book is suitable for a graduate or an advanced undergraduate course on game theory.




An Introductory Course on Mathematical Game Theory and Applications


Book Description

Game theory provides a mathematical setting for analyzing competition and cooperation in interactive situations. The theory has been famously applied in economics, but is relevant in many other sciences, such as psychology, computer science, artificial intelligence, biology, and political science. This book presents an introductory and up-to-date course on game theory addressed to mathematicians and economists, and to other scientists having a basic mathematical background. The book is self-contained, providing a formal description of the classic game-theoretic concepts together with rigorous proofs of the main results in the field. The theory is illustrated through abundant examples, applications, and exercises. The style is distinctively concise, while offering motivations and interpretations of the theory to make the book accessible to a wide readership. The basic concepts and results of game theory are given a formal treatment, and the mathematical tools necessary to develop them are carefully presented. In this second edition, the content on cooperative games is considerably strengthened, with a new chapter on applications of cooperative games and operations research, including some material on computational aspects and applications outside academia.




An Introductory Course on Mathematical Game Theory and Applications


Book Description

Game theory provides a mathematical setting for analyzing competition and cooperation in interactive situations. The theory has been famously applied in economics, but is relevant in many other sciences, such as psychology, computer science, artificial intelligence, biology, and political science. This book presents an introductory and up-to-date course on game theory addressed to mathematicians and economists, and to other scientists having a basic mathematical background. The book is self-contained, providing a formal description of the classic game-theoretic concepts together with rigorous proofs of the main results in the field. The theory is illustrated through abundant examples, applications, and exercises. The style is distinctively concise, while offering motivations and interpretations of the theory to make the book accessible to a wide readership. The basic concepts and results of game theory are given a formal treatment, and the mathematical tools necessary to develop them are carefully presented. In this second edition, the content on cooperative games is considerably strengthened, with a new chapter on applications of cooperative games and operations research, including some material on computational aspects and applications outside academia.




Introducing Game Theory and its Applications


Book Description

The mathematical study of games is an intriguing endeavor with implications and applications that reach far beyond tic-tac-toe, chess, and poker to economics, business, and even biology and politics. Most texts on the subject, however, are written at the graduate level for those with strong mathematics, economics, or business backgrounds. In




Game Theory


Book Description

This modern, still relevant text is suitable for senior undergraduate and graduate students, teachers and professionals in mathematics, operational research, economics, sociology; and psychology, defence and strategic studies, and war games. Engagingly written with agreeable humor, the book can also be understood by non-mathematicians. It shows basic ideas of extensive form, pure and mixed strategies, the minimax theorem, non-cooperative and co-operative games, and a ''first class'' account of linear programming, theory and practice. The text is self-contained with comprehensive source references. Based on a series of lectures given by the author in the theory of games at Royal Holloway College, it gives unusually comprehensive but concise treatment of co-operative games, an original account of bargaining models, with a skilfully guided tour through the Shapely and Nash solutions for bimatrix games and a carefully illustrated account of finding the best threat strategies.




An Introduction to Game-Theoretic Modelling


Book Description

This is an introduction to game theory and applications with an emphasis on self-discovery from the perspective of a mathematical modeller. The book deals in a unified manner with the central concepts of both classical and evolutionary game theory. The key ideas are illustrated throughout by a wide variety of well-chosen examples of both human and non-human behavior, including car pooling, price fixing, food sharing, sex allocation and competition for territories or oviposition sites. There are numerous exercises with solutions.




Matt DeVos and Deborah A. Kent


Book Description

This book offers a gentle introduction to the mathematics of both sides of game theory: combinatorial and classical. The combination allows for a dynamic and rich tour of the subject united by a common theme of strategic reasoning. Designed as a textbook for an undergraduate mathematics class and with ample material and limited dependencies between the chapters, the book is adaptable to a variety of situations and a range of audiences. Instructors, students, and independent readers alike will appreciate the flexibility in content choices as well as the generous sets of exercises at various levels.




Game Theory


Book Description

The outstanding feature of this book is that it provides a unified account of three types of decision problem. It covers the basic ideas of decision theory, classical game theory, and evolutionary game theory in one volume. No background knowledge of economics or biology is required as examples have been carefully selected for their accessibility. Detailed solutions to the numerous exercises are provided at the back of the book, making it ideal for self-study. This introduction to game theory is intended as a first course for undergraduate students of mathematics, but it will also interest advanced students or researchers in biology and economics.




Noncooperative Game Theory


Book Description

Noncooperative Game Theory is aimed at students interested in using game theory as a design methodology for solving problems in engineering and computer science. João Hespanha shows that such design challenges can be analyzed through game theoretical perspectives that help to pinpoint each problem's essence: Who are the players? What are their goals? Will the solution to "the game" solve the original design problem? Using the fundamentals of game theory, Hespanha explores these issues and more. The use of game theory in technology design is a recent development arising from the intrinsic limitations of classical optimization-based designs. In optimization, one attempts to find values for parameters that minimize suitably defined criteria—such as monetary cost, energy consumption, or heat generated. However, in most engineering applications, there is always some uncertainty as to how the selected parameters will affect the final objective. Through a sequential and easy-to-understand discussion, Hespanha examines how to make sure that the selection leads to acceptable performance, even in the presence of uncertainty—the unforgiving variable that can wreck engineering designs. Hespanha looks at such standard topics as zero-sum, non-zero-sum, and dynamics games and includes a MATLAB guide to coding. Noncooperative Game Theory offers students a fresh way of approaching engineering and computer science applications. An introduction to game theory applications for students of engineering and computer science Materials presented sequentially and in an easy-to-understand fashion Topics explore zero-sum, non-zero-sum, and dynamics games MATLAB commands are included




An Introductory Course on Mathematical Game Theory


Book Description

Presents an introductory and up-to-date course on game theory addressed to mathematicians and economists, and to other scientists having a basic mathematical background. It provides a formal description of the classic game-theoretic concepts together with rigorous proofs of the main results in the field. The theory is illustrated with abundant examples, applications, and exercises.