An Investigation of the Major Transformations and Loss Mechanisms of Mercury and Selenium in the Surface Ocean


Book Description

The importance of methylmercury (CH3Hg) photochemical degradation, an understudied process in marine ecosystems, was investigated in variety of coastal and oceanic waters from the northeastern U.S. as well as the Atlantic, Pacific and Arctic Oceans. Degradation rate constants ranged from 0.87 to 1.67 day-1,but did not correlate with the environmental parameters measured. Further experiments investigating the reaction mechanism observed little effect of nitrate, chloride, and bromide ions. CH3Hg loss per year due to photodegradation was modeled across latitudes from the Equator to the Arctic using water column integrated rates determined for coastal wetlands, estuaries and the open ocean. A global photochemical demethylation rate of 25.3 Mmol yr-1 was calculated, representing an important flux in the biogeochemical cycle of CH3Hg. Air-sea exchange of elemental mercury (Hg0), another important process in the biogeochemical cycle of Hg, was investigated on the U.S. GEOTRACES cruise in the Arctic Ocean in 2015. High resolution measurements of Hg0 in surface waters and the atmosphere were used to calculate evasional fluxes, and Hg concentrations determined in aerosols and precipitation were used to estimate atmospheric deposition. Overall, concentrations of dissolved Hg0 were near saturation in ice-free waters (32 ± 30 fM), but were highly enriched under contiguous ice (101 ± 98 fM, up to 544 fM). Predicted peaks in Hg0 evasion, although blocked by the sea ice barrier, were as high as 270 pmol m-2 h-1. From these estimates we can better predict the effect of a changing climate on Hg dynamics in the Arctic. The photochemical cycling of selenium (Se), an essential micronutrient, was also studied in marine waters. Inorganic Se(IV) and Se(VI) were found in nutrient-type distributions in samples collected during the Metzyme cruise on the equatorial Pacific Ocean in 2011. Photochemically mediated redox transformation pathways studied could not explain the enhanced concentrations of Se(IV) observed, indicating that a biological process is likely involved. Photodegradation was an important sink of dimethyl selenide ((CH3)2Se) in a variety of natural waters, with reaction rate constants ranging from 18.1 to 47.0 day-1. The global loss of (CH3)2Se due to photodegradation was estimated at 28.0 Gmol yr-1.







JV Task 96 - Phase 2 - Investigating the Importance of the Mercury-Selenium Interaction


Book Description

In order to improve the understanding of the mercury issue, it is vital to study mercury's effects on selenium physiology. While mercury present in the environment or food sources may pose health risks, the protective effects of selenium have not been adequately considered in establishing regulatory policy. Numerous studies report that vulnerability to mercury toxicity is inversely proportional to selenium status or level. However, selenium status has not been considered in the development of the reference dosage levels for mercury exposure. Experimental animals fed low-selenium diets are far more vulnerable to mercury toxicity than animals fed normal selenium, and animals fed selenium-rich diets are even more resistant. Selenium-dependent enzymes in brain and endocrine tissues can be impaired by excessive mercury exposure, apparently because mercury has an extremely high binding affinity for selenium. When selenium becomes bound to mercury, it is unable to participate in the metabolic cycling of selenoprotein synthesis. Because of mercury-dependent impairments of selenoprotein synthesis, various antioxidant and regulatory functions in brain biochemistry are compromised. This report details a 2-year multiclient-funded research program designed to examine the interactions between mercury and selenium in animal models. The studies explored the effects of dietary intakes of toxic amounts of methylmercury and the protective effects of the normal dietary range of selenium in counteracting mercury toxicity. This study finds that the amounts of selenium present in ocean fish are sufficient to protect against far larger quantities of methylmercury than those present in typical seafoods. Toxic effects of methylmercury exposure were not directly proportional to mercury concentrations in blood, brain, or any other tissues. Instead, mercury toxicity was proportional to molar ratios of mercury relative to selenium. In order to accurately assess risk associated with methylmercury or mercury exposures, mercury-selenium ratios appear to be far more accurate and effective in identifying risk and protecting human and environmental health. This study also finds that methylmercury toxicity can be effectively treated by dietary selenium, preventing the death and progressive disabilities that otherwise occur in methylmercury-treated subjects. Remarkably, the positive response to selenium therapy was essentially equivalent regardless of whether or not toxic amounts of methylmercury were still administered. The findings of the Physiologically Oriented Integration of Nutrients and Toxins (POINT) models of the effects of mercury and selenium developed in this project are consistent with the hypothesis that mercury toxicity arises because of mercury-dependent inhibition of selenium availability in brain and endocrine tissues. This appears to occur through synergistic effects of mercury-dependent inhibition of selenium transport to these tissues and selective sequestration of the selenium present in the tissues. Compromised transport of selenium to the brain and endocrine tissues would be particularly hazardous to the developing fetus because the rapidly growing tissues of the child have no selenium reserves. Therefore, maternal consumption of foods with high mercury-selenium ratios is hazardous. In summation, methylmercury exposure is unlikely to cause harm in populations that eat selenium-rich diets but may cause harm among populations that consume certain foods that have methylmercury present in excess of selenium.







Mercury as a Global Pollutant


Book Description

ACKNOWLEDGEMENTS xiv PART I MERCURY AND HUMAN HEALTH B. WHEATLEY and S. PARADIS I Exposure of Canadian Aboriginal Peoples to Methylmercury 3-11 M. GIRARD and C. DUMONT I Exposure of James Bay Cree to Methylmercury during Pregnancy for the Years 1983-91 13-19 M. RICHARDSON, M. MITCHELL, S. COAD and R. RAPHAEL I Exposure to Mercury in Canada: A Multimedia Analysis 21-30 M. RICHARDSON, M. EGYED and D. J. CURRIE I Human Exposure to Mercury may Decrease as Acidic Deposition Increases 31-39 L. E. FLEMING, S. WATKINS, R. KADERMAN, B. LEVIN, D. R. AVYAR, M. BIZZIO, D. STEPHENS and J. A. BEAN I Mercury Exposure in Humans through Food Consumption from the Everglades of Florida 41-48 J. M. GEARHART, H. J. CLEWELL III, K. S. CRUMP, A. M. SHIPP and A. SILVERS I Pharmacokinetic Dose Estimates of Mercury in Children and Dose-Response Curves of Performance Tests in a Large Epidemiological Study 49-58 I. SKARE I Mass Balance and Systemic Uptake of Mercury Released from Dental Amalgam Fillings 59-67 J. DELLINGER, N. KMIECIK, S. GERSTENBERGER and H. NGU I Mercury Contamina tion of Fish in the Ojibwa Diet: I. Walleye Fillets and Skin-On versus Skin-Off Sampling 69-76 J. DELLINGER, L. MALEK and M. BEATTIE I Mercury Contamination of Fish in the Ojibwa Diet: II. Sensory Evoked Responses in Rats Fed Walleye 77-83 H. AKAGI, O. MALM, F. J. P. BRANCHES, Y. KINJO, Y. KASHIMA, J. R. D. GUIMARAES, R. B. OLIVEIRA, K. HARAGUCHI, W. C. PFEIFFER, Y.




Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas


Book Description

From a new perspective, namely focusing on the interaction of selenium and mercury, this thesis provides new insights into traditional research on biogeochemical cycles of mercury in soil-plant interaction and associated human exposure and risks. The subject of this thesis is both valuable and timely, providing essential information not only on selenium-mercury interaction in the soil-plant system but also on how to assess the combined benefits and risk of co-exposure to mercury and selenium. This work also sheds light on future aspects regarding prevention, remediation and risk management for environmental mercury contamination. Presenting high-quality papers published in leading international SCI journals such as Environmental Health Perspectives and Environmental Science & Technology and having been recognized with the Special Award of Presidential Scholarship Award and Excellent Doctoral Dissertations Prize of the Chinese Academy of Sciences (CAS), this thesis offers a valuable resource for scientific communities, policy-makers and non-experts who are interested in this field. Dr. Hua Zhang works at the Norwegian Institute for Water Research (NIVA), Oslo, Norway.