An Invitation to Mathematics


Book Description

This Invitation to Mathematics consists of 14 contributions, many from the world's leading mathematicians, which introduce the readers to exciting aspects of current mathematical research. The contributions are as varied as the personalities of active mathematicians, but together they show mathematics as a rich and lively field of research. The contributions are written for interested students at the age of transition between high school and university who know high school mathematics and perhaps competition mathematics and who want to find out what current research mathematics is about. We hope that it will also be of interest to teachers or more advanced mathematicians who would like to learn about exciting aspects of mathematics outside of their own work or specialization. Together with a team of young ``test readers'', editors and authors have taken great care, through a substantial ``active editing'' process, to make the contributions understandable by the intended readership.




Invitation to the Mathematics of Fermat-Wiles


Book Description

Assuming only modest knowledge of undergraduate level math, Invitation to the Mathematics of Fermat-Wiles presents diverse concepts required to comprehend Wiles' extraordinary proof. Furthermore, it places these concepts in their historical context. This book can be used in introduction to mathematics theories courses and in special topics courses on Fermat's last theorem. It contains themes suitable for development by students as an introduction to personal research as well as numerous exercises and problems. However, the book will also appeal to the inquiring and mathematically informed reader intrigued by the unraveling of this fascinating puzzle. Rigorously presents the concepts required to understand Wiles' proof, assuming only modest undergraduate level math Sets the math in its historical context Contains several themes that could be further developed by student research and numerous exercises and problems Written by Yves Hellegouarch, who himself made an important contribution to the proof of Fermat's last theorem




Invitation to Mathematics


Book Description

Based on a well-received course designed for philosophy students, this book is an informal introduction to mathematical thinking. The work will be rewarding not only for philosophers concerned with mathematical questions but also for serious amateur mathematicians with an interest in the "frontiers" as well as the foundations of mathematics. In what might be termed a sampler of the discipline, Konrad Jacobs discusses an unusually wide range of topics, including such items of contemporary interest as knot theory, optimization theory, and dynamical systems. Using Euclidean geometry and algebra to introduce the mathematical mode of thought, the author then turns to recent developments. In the process he offers what he calls a "Smithsonian of mathematical showpieces": the five Platonic Solids, the Mbius Strip, the Cantor Discontinuum, the Peano Curve, Reidemeister's Knot Table, the plane ornaments, Alexander's Horned Sphere, and Antoine's Necklace. The treatments of geometry and algebra are followed by a chapter on induction and one on optimization, game theory, and mathematical economics. The chapter on topology includes a discussion of topological spaces and continuous mappings, curves and knots, Euler's polyhedral formula for surfaces, and the fundamental group. The last chapter deals with dynamics and contains material on the Game of Life, circle rotation, Smale's "horseshoe," and stability and instability, among other topics.




An Invitation to Abstract Mathematics


Book Description

This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH




Invitation to Discrete Mathematics


Book Description

A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.







An Invitation to Critical Mathematics Education


Book Description

An Invitation to Critical Mathematics Education deals with a range of crucial topics. Among these are students’ foreground, landscapes of investigation, and mathematics in action. The book is intended for a broad audience: educators, students, teachers, policy makers, anybody interested in the further development of mathematics education. The book discusses concerns and preoccupation. This way it provides an invitation into critical mathematics education.




An Invitation to Abstract Algebra


Book Description

Studying abstract algebra can be an adventure of awe-inspiring discovery. The subject need not be watered down nor should it be presented as if all students will become mathematics instructors. This is a beautiful, profound, and useful field which is part of the shared language of many areas both within and outside of mathematics. To begin this journey of discovery, some experience with mathematical reasoning is beneficial. This text takes a fairly rigorous approach to its subject, and expects the reader to understand and create proofs as well as examples throughout. The book follows a single arc, starting from humble beginnings with arithmetic and high-school algebra, gradually introducing abstract structures and concepts, and culminating with Niels Henrik Abel and Evariste Galois’ achievement in understanding how we can—and cannot—represent the roots of polynomials. The mathematically experienced reader may recognize a bias toward commutative algebra and fondness for number theory. The presentation includes the following features: Exercises are designed to support and extend the material in the chapter, as well as prepare for the succeeding chapters. The text can be used for a one, two, or three-term course. Each new topic is motivated with a question. A collection of projects appears in Chapter 23. Abstract algebra is indeed a deep subject; it can transform not only the way one thinks about mathematics, but the way that one thinks—period. This book is offered as a manual to a new way of thinking. The author’s aim is to instill the desire to understand the material, to encourage more discovery, and to develop an appreciation of the subject for its own sake.




An Invitation to Mathematical Physics and Its History


Book Description

This state of the art book takes an applications based approach to teaching mathematics to engineering and applied sciences students. The book lays emphasis on associating mathematical concepts with their physical counterparts, training students of engineering in mathematics to help them learn how things work. The book covers the concepts of number systems, algebra equations and calculus through discussions on mathematics and physics, discussing their intertwined history in a chronological order. The book includes examples, homework problems, and exercises. This book can be used to teach a first course in engineering mathematics or as a refresher on basic mathematical physics. Besides serving as core textbook, this book will also appeal to undergraduate students with cross-disciplinary interests as a supplementary text or reader.




An Invitation to Applied Mathematics


Book Description

An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation introduces the reader to the methodology of modern applied mathematics in modeling, analysis, and scientific computing with emphasis on the use of ordinary and partial differential equations. Each topic is introduced with an attractive physical problem, where a mathematical model is constructed using physical and constitutive laws arising from the conservation of mass, conservation of momentum, or Maxwell's electrodynamics. Relevant mathematical analysis (which might employ vector calculus, Fourier series, nonlinear ODEs, bifurcation theory, perturbation theory, potential theory, control theory, or probability theory) or scientific computing (which might include Newton's method, the method of lines, finite differences, finite elements, finite volumes, boundary elements, projection methods, smoothed particle hydrodynamics, or Lagrangian methods) is developed in context and used to make physically significant predictions. The target audience is advanced undergraduates (who have at least a working knowledge of vector calculus and linear ordinary differential equations) or beginning graduate students. Readers will gain a solid and exciting introduction to modeling, mathematical analysis, and computation that provides the key ideas and skills needed to enter the wider world of modern applied mathematics. Presents an integrated wealth of modeling, analysis, and numerical methods in one volume Provides practical and comprehensible introductions to complex subjects, for example, conservation laws, CFD, SPH, BEM, and FEM Includes a rich set of applications, with more appealing problems and projects suggested