Diagnostic Radiology Physics


Book Description

This publication is aimed at students and teachers involved in programmes that train medical physicists for work in diagnostic radiology. It provides a comprehensive overview of the basic medical physics knowledge required in the form of a syllabus for the practice of modern diagnostic radiology. This makes it particularly useful for graduate students and residents in medical physics programmes. The material presented in the publication has been endorsed by the major international organizations and is the foundation for academic and clinical courses in both diagnostic radiology physics and in emerging areas such as imaging in radiotherapy.




Radiation Biophysics


Book Description

This newly revised and updated edition of Radiation Biophysics provides an in-depth description of the physics and chemistry of radiation and its effects on biological systems. Coverage begins with fundamental concepts of the physics of radiation and radioactivity, then progresses through the chemistry and biology of the interaction of radiation with living systems. The Second Edition of this highly praised text includes major revisions which reflect the rapid advances in the field. New material covers recent developments in the fields of carcinogenesis, DNA repair, molecular genetics, and the molecular biology of oncogenes and tumor suppressor genes. The book also includes extensive discussion of the practical impact of radiation on everyday life. - Covers the fundamentals of radiation physics in a manner that is understandable to students and professionals with a limited physics background - Includes problem sets and exercises to aid both teachers and students - Discusses radioactivity, internally deposited radionuclides, and dosimetry - Analyzes the risks for occupational and non-occupational workers exposed to radiation sources







Synchrotron Radiation Research


Book Description

This book has grown out of our shared experience in the development of the Stanford Synchrotron Radiation Laboratory (SSRL), based on the electron-positron storage ring SPEAR at the Stanford Linear Accelerator Center (SLAC) starting in Summer, 1973. The immense potential of the photon beam from SPEAR became obvious as soon as experiments using the beam started to run in May, 1974. The rapid growth of interest in using the beam since that time and the growth of other facilities using high-energy storage rings (see Chapters 1 and 3) demonstrates how the users of this source of radiation are finding applications in an increasingly wide variety of fields of science and technology. In assembling the list of authors for this book, we have tried to cover as many of the applications of synchrotron radiation, both realized already or in the process of realization, as we can. Inevitably, there are omissions both through lack of space and because many projects are at an early stage. We thank the authors for their efforts and cooperation in producing what we believe is the most comprehensive treatment of synchrotron radiation research to date.




Proton Therapy Physics


Book Description

Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.




Core Level Spectroscopy of Solids


Book Description

Core level spectroscopy has become a powerful tool in the study of electronic states in solids. From fundamental aspects to the most recent developments, Core Level Spectroscopy of Solids presents the theoretical calculations, experimental data, and underlying physics of x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), x




Physics in Nuclear Medicine


Book Description

In this work, the authors provide up-to-date, comprehensive information on the physics underlying modern nuclear medicine and imaging using radioactively labelled tracers. Examples are presented with solutions worked out in step-by-step detail, illustrating important concepts and calculations.




Radiological Safety Aspects of the Operation of Electron Linear Accelerators


Book Description

Electron linear accelerators are being used throughout the world in increasing numbers in a variety of important applications. Foremost among these is their role in the treatment of cancer. Commercial uses include non-destructive testing by radiography, food preservation, product sterilization and radiation processing of materials such as plastics and adhesives. Scientific applications include investigations in radiation biology, radiation chemistry, nuclear and elementary particle physics and radiation research. This manual provides authoritative guidance in radiation protection for this important category of radiation sources.