An Upper Bound for Conforming Delaunay Triangulations


Book Description

Abstract: "A plane geometric graph C in R℗ conforms to another such graph G if each edge of G is the union of some edges of C. It is provedthat for every G with n vertices and m edges, there is a completion of a Delaunay triangulation of O(m℗N) points that conforms to G. The algorithm that constructs the points is also described."




Delaunay Mesh Generation


Book Description

Written by authors at the forefront of modern algorithms research, Delaunay Mesh Generation demonstrates the power and versatility of Delaunay meshers in tackling complex geometric domains ranging from polyhedra with internal boundaries to piecewise smooth surfaces. Covering both volume and surface meshes, the authors fully explain how and why thes




Voronoi Diagrams And Delaunay Triangulations


Book Description

Voronoi diagrams partition space according to the influence certain sites exert on their environment. Since the 17th century, such structures play an important role in many areas like Astronomy, Physics, Chemistry, Biology, Ecology, Economics, Mathematics and Computer Science. They help to describe zones of political influence, to determine the hospital nearest to an accident site, to compute collision-free paths for mobile robots, to reconstruct curves and surfaces from sample points, to refine triangular meshes, and to design location strategies for competing markets.This unique book offers a state-of-the-art view of Voronoi diagrams and their structure, and it provides efficient algorithms towards their computation.Readers with an entry-level background in algorithms can enjoy a guided tour of gently increasing difficulty through a fascinating area. Lecturers might find this volume a welcome source for their courses on computational geometry. Experts are offered a broader view, including many alternative solutions, and up-to-date references to the existing literature; they might benefit in their own research or application development.




Geometry and Topology for Mesh Generation


Book Description

The book combines topics in mathematics (geometry and topology), computer science (algorithms), and engineering (mesh generation). The original motivation for these topics was the difficulty faced (both conceptually and in the technical execution) in any attempt to combine elements of combinatorial and of numerical algorithms. Mesh generation is a topic where a meaningful combination of these different approaches to problem solving is inevitable. The book develops methods from both areas that are amenable to combination, and explains recent breakthrough solutions to meshing that fit into this category.The book should be an ideal graduate text for courses on mesh generation. The specific material is selected giving preference to topics that are elementary, attractive, lend themselves to teaching, useful, and interesting.




Handbook of Discrete and Computational Geometry


Book Description

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.




Spatial Tessellations


Book Description

Spatial data analysis is a fast growing area and Voronoi diagrams provide a means of naturally partitioning space into subregions to facilitate spatial data manipulation, modelling of spatial structures, pattern recognition and locational optimization. With such versatility, the Voronoi diagram and its relative, the Delaunay triangulation, provide valuable tools for the analysis of spatial data. This is a rapidly growing research area and in this fully updated second edition the authors provide an up-to-date and comprehensive unification of all the previous literature on the subject of Voronoi diagrams. Features: * Expands on the highly acclaimed first edition * Provides an up-to-date and comprehensive survey of the existing literature on Voronoi diagrams * Includes a useful compendium of applications * Contains an extensive bibliography A wide range of applications is discussed, enabling this book to serve as an important reference volume on this topic. The text will appeal to students and researchers studying spatial data in a number of areas, in particular, applied probability, computational geometry, and Geographic Information Science (GIS). This book will appeal equally to those whose interests in Voronoi diagrams are theoretical, practical or both.




Algorithms in Combinatorial Geometry


Book Description

Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.




Handbook of Computational Geometry


Book Description

Computational Geometry is an area that provides solutions to geometric problems which arise in applications including Geographic Information Systems, Robotics and Computer Graphics. This Handbook provides an overview of key concepts and results in Computational Geometry. It may serve as a reference and study guide to the field. Not only the most advanced methods or solutions are described, but also many alternate ways of looking at problems and how to solve them.




Twentieth Anniversary Volume: Discrete & Computational Geometry


Book Description

This commemorative book contains the 28 major articles that appeared in the 2008 Twentieth Anniversary Issue of the journal Discrete & Computational Geometry, and presents a comprehensive picture of the current state of the field. The articles in this volume, a number of which solve long-outstanding problems in the field, were chosen by the editors of DCG for the importance of their results, for the breadth of their scope, and to show the intimate connections that have arisen between discrete and computational geometry and other areas of both computer science and mathematics. Apart from the articles, the editors present an expanded preface, along with a set of photographs of groups and individuals who have played a major role in the history of the field during the past twenty years.




Computational Geometry


Book Description

From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2