Analogues for the Solution of Boundary-Value Problems


Book Description

Analogues for the Solution of Boundary-Value Problems considers the simulation of integral methods of solving boundary-value problems. This book is organized into 11 chapters. After the introduction provided in Chapter I, the formulation of some important engineering problems that reduce to the solution of partial differential equations is reviewed in Chapter II. Chapter III covers the mathematical methods for the solution of problems, such as the thermal problem of electrode graphitization and underground coal gasification. The theory of the physical processes of electrical simulation and principles involved in the construction of analogues is elaborated in Chapter IV, while the measurements in electrical analogues is deliberated in Chapter V. Chapters VI to VIII describe the construction of network analyzers and star-integrating networks. The methods of physical simulation for the solution of certain boundary-value problems are analyzed in Chapter IX. Chapters X and XI are devoted to future improvements and developments in analogues for the solution of boundary-value problems. This publication is intended for college students and specialists engaged in solving boundary-value problems.




A Unified Approach to Boundary Value Problems


Book Description

This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.




Unified Transform for Boundary Value Problems


Book Description

This book describes state-of-the-art advances and applications of the unified transform and its relation to the boundary element method. The authors present the solution of boundary value problems from several different perspectives, in particular the type of problems modeled by partial differential equations (PDEs). They discuss recent applications of the unified transform to the analysis and numerical modeling of boundary value problems for linear and integrable nonlinear PDEs and the closely related boundary element method, a well-established numerical approach for solving linear elliptic PDEs.? The text is divided into three parts. Part I contains new theoretical results on linear and nonlinear evolutionary and elliptic problems. New explicit solution representations for several classes of boundary value problems are constructed and rigorously analyzed. Part II is a detailed overview of variational formulations for elliptic problems. It places the unified transform approach in a classic context alongside the boundary element method and stresses its novelty. Part III presents recent numerical applications based on the boundary element method and on the unified transform.







Differential Equations with Boundary-value Problems


Book Description

Now enhanced with the innovative DE Tools CD-ROM and the iLrn teaching and learning system, this proven text explains the "how" behind the material and strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This accessible text speaks to students through a wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. This book was written with the student's understanding firmly in mind. Using a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations.







Partial Differential Equations and Boundary-Value Problems with Applications


Book Description

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.










Finite Difference Methods for Ordinary and Partial Differential Equations


Book Description

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.