Analysis and Design of MOSFETs


Book Description

Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction is the first book devoted entirely to a broad spectrum of analysis and design issues related to the semiconductor device called metal-oxide semiconductor field-effect transistor (MOSFET). These issues include MOSFET device physics, modeling, numerical simulation, and parameter extraction. The discussion of the application of device simulation to the extraction of MOSFET parameters, such as the threshold voltage, effective channel lengths, and series resistances, is of particular interest to all readers and provides a valuable learning and reference tool for students, researchers and engineers. Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction, extensively referenced, and containing more than 180 illustrations, is an innovative and integral new book on MOSFETs design technology.




Mosfet Modeling For Circuit Analysis And Design


Book Description

This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.




Advanced Power MOSFET Concepts


Book Description

During the last decade many new concepts have been proposed for improving the performance of power MOSFETs. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. "Advanced Power MOSFET Concepts" provides an in-depth treatment of the physics of operation of advanced power MOSFETs. Analytical models for explaining the operation of all the advanced power MOSFETs will be developed. The results of numerical simulations will be provided to give additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and give greater insight into the device operation.




CMOS Analog Design Using All-Region MOSFET Modeling


Book Description

The essentials of analog circuit design with a unique all-region MOSFET modeling approach.




Technology Computer Aided Design


Book Description

Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and TCAD software. Providing background concepts involved in the TCAD simulation of MOSFET devices, it presents concepts in a simplified manner, frequently using comparisons to everyday-life experiences. The book then explains concepts in depth, with required mathematics and program code. This book also details the classical semiconductor physics for understanding the principle of operations for VLSI MOS transistors, illustrates recent developments in the area of MOSFET and other electronic devices, and analyzes the evolution of the role of modeling and simulation of MOSFET. It also provides exposure to the two most commercially popular TCAD simulation tools Silvaco and Sentaurus. • Emphasizes the need for TCAD simulation to be included within VLSI design flow for nano-scale integrated circuits • Introduces the advantages of TCAD simulations for device and process technology characterization • Presents the fundamental physics and mathematics incorporated in the TCAD tools • Includes popular commercial TCAD simulation tools (Silvaco and Sentaurus) • Provides characterization of performances of VLSI MOSFETs through TCAD tools • Offers familiarization to compact modeling for VLSI circuit simulation R&D cost and time for electronic product development is drastically reduced by taking advantage of TCAD tools, making it indispensable for modern VLSI device technologies. They provide a means to characterize the MOS transistors and improve the VLSI circuit simulation procedure. The comprehensive information and systematic approach to design, characterization, fabrication, and computation of VLSI MOS transistor through TCAD tools presented in this book provides a thorough foundation for the development of models that simplify the design verification process and make it cost effective.




MOSFET Theory and Design


Book Description

Developed for a one-semester course at the junior, senior, or graduate level, MOSFET Theory and Design presents a clear, in-depth treatment of physical analysis and design principles for the MOSFET. By focusing solely on the MOSFET, this slim volume recognizes the dominance of this device in today's microelectronics technology while also providing students with an efficient text free of extra subject matter. Carefully building from simple examples to more complex, real-life cases, the text begins with elementary theory for the MOS capacitor, adding and explaining the complicating factors step by step. It treats the interplay of MOS capacitor and PN junction in the MOSFET both physically and analytically, using some original tools. The book goes on to cover advanced models of the MOSFET, including SPICE treatments of small-signal and large-signal problems using Level 1, 2, and 3 first-generation models, and ending with a brief discussion of second- and third-generation models. MOSFET Theory and Design offers a "hands on" approach to learning, employing analytic, computer, and design problems. It incorporates additional pedagogical aids such as a book summary, review questions that emphasize essential points, in-text exercises with accompanying solutions, and a comprehensive bibliography.




The Physics and Modeling of Mosfets


Book Description

This volume provides a timely description of the latest compact MOS transistor models for circuit simulation. The first generation BSIM3 and BSIM4 models that have dominated circuit simulation in the last decade are no longer capable of characterizing all the important features of modern sub-100nm MOS transistors. This book discusses the second generation MOS transistor models that are now in urgent demand and being brought into the initial phase of manufacturing applications. It considers how the models are to include the complete drift-diffusion theory using the surface potential variable in the MOS transistor channel in order to give one characterization equation.




MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch


Book Description

This book provides analysis and discusses the design of various MOSFET technologies which are used for the design of Double-Pole Four-Throw (DP4T) RF switches for next generation communication systems. The authors discuss the design of the (DP4T) RF switch by using the Double-Gate (DG) MOSFET, as well as the Cylindrical Surrounding double-gate (CSDG) MOSFET. The effect of HFO2 (high dielectric material) in the design of DG MOSFET and CSDG MOSFET is also explored. Coverage includes comparison of Single-gate MOSFET and Double-gate MOSFET switching parameters, as well as testing of MOSFETs parameters using image acquisition.




Design and Development of Efficient Energy Systems


Book Description

There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these “game changers,” governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.




Mosfet Modeling for VLSI Simulation


Book Description

A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations. The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.