Analysis and Design of Structural Sandwich Panels


Book Description

Analysis and Design of Structural Sandwich Panels serves as a simple guide to the fundamental aspects of the theory of sandwich construction and to the assumptions on which it is based. This book discusses the real importance of the assumptions made in sandwich theory concerning the relative stiffness and thickness of the faces and the core. Organized into 12 chapters, this book begins with an overview of the relatively simple problems of sandwich beams and struts. This text then discusses the bending of sandwich beams, which grows naturally from the ordinary theory of bending. Other chapters explore the bending and buckling of sandwich panels. This book discusses as well the panel analyses based on the Ritz method and on the derivation of differential equations for a sandwich plate. This book should be of interest not only to aeronautical engineers but also to readers concerned with the design of sandwich panels in the building, plastics, and boat-building industries.







Lightweight Sandwich Construction


Book Description

Sandwich panels are being used increasingly as the cladding of buildings like factories, warehouses, cold stores and retail sheds. This is because they are light in weight, thermally efficient, aesthetically attractive and can be easily handled and erected. However, to date, an authoritative book on the subject was lacking. This new reference work aims to fill that gap. The designer, specifier and manufacturer of sandwich panels all require a great deal of information on a wide range of subjects. This book was written by a group of European experts under the editorship of a UK specialist in lightweight construction. It provides guidance on: * materials used in manufacture * thermal efficiency and air- and water-tightness * acoustic performance * performance in fire * durability * special problems of sandwich panels in cold stores and chill rooms * architectural and aesthetic considerations * structural design at the ultimate and serviceability limit states * additional structural considerations including fastenings, the effect of openings and the use of sandwich panels as load-bearing walls * test procedures The book concludes with some numerical design examples and is highly illustrated throughout.




Design and Analysis of Composite Structures


Book Description

Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from actual applications are worked out in detail to show how the concepts are applied, solving the same design problem with different methods based on different drivers (e.g. cost or weight) to show how the final configuration changes as the requirements and approach change. Provides a toolkit of analysis and design methods to most situations encountered in practice, as well as analytical frameworks and the means to solving them for tackling less frequent problems. Presents solutions applicable to optimization schemes without having to run finite element models at each iteration, speeding up the design process and allowing examination of several more alternatives than traditional approaches. Includes guidelines showing how decisions based on manufacturing considerations affect weight and how weight optimization may adversely affect the cost. Accompanied by a website at www.wiley.com/go/kassapoglou hosting lecture slides and solutions to the exercises for instructors.







Sandwich Structures 7: Advancing with Sandwich Structures and Materials


Book Description

Sandwich structures represent a special form of a laminated composite material or structural elements, where a relatively thick, lightweight and compliant core material separates thin stiff and strong face sheets. The faces are usually made of laminated polymeric based composite materials, and typically, the core can be a honeycomb type material, a polymeric foam or balsa wood. The faces and the core are joined by adhesive bonding, which ensures the load transfer between the sandwich constituent parts. The result is a special laminate with very high bending stiffness and strength to weight ratios. Sandwich structures are being used successfully for a variety of applications such as spacecraft, aircraft, train and car structures, wind turbine blades, boat/ship superstructures, boat/ship hulls and many others. The overall objective of the 7th International Conference on Sandwich Structures (ICSS-7) is to provide a forum for the presentation and discussion of the latest research and technology on all aspects of sandwich structures and materials, spanning the entire spectrum of research to applications in all the fields listed above.




Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction


Book Description

Plates and panels are primary components in many structures including space vehicles, aircraft, automobiles, buildings, bridge decks, ships and submarines. The ability to design, analyse, optimise and select the proper materials for these structures is a necessity for structural designers, analysts and researchers. This text consists of four parts. The first deals with plates of isotropic (metallic and polymeric) materials. The second involves composite material plates, including anisotropy and laminate considerations. The third section treats sandwich constructions of various types, and the final section gives an introduction to plates involving piezoelectric materials, in which the "smart" or "intelligent" materials are used as actuators or sensors. In each section, the formulations encompass plate structures subjected to static loads, dynamic loads, buckling, thermal/moisture environments, and minimum weight structural optimisation. This is a textbook for a graduate course, an undergraduate senior course and a reference. Many homework problems are given in various chapters.




The Behavior of Sandwich Structures of Isotropic and Composite Materials


Book Description

The Behavior of Sandwich Structures of Isotropic and Composite Materials presents the mathematics, descriptions, and analytical techniques in the growing field of sandwich structures. From a background in sandwich structures to thermoelastic problems of sandwich structures and sandwich shell theory, the book provides the knowledge needed to analyze, design, and optimize various sandwich structures. As one would expect from a book on sandwich structures, this volume discusses special failure modes such as face wrinkling and core shear instability. Coverage includes not only honeycomb cores, but also foam, web, and truss cores. An important topic in composite structure design, optimization is explored in two chapters on sandwich plates and sandwich shells. The author presents the optimization techniques in closed form and the methods are applicable to material selection and geometric design. The book also contains a set of problems and references at the end of each chapter. This text is ideal for engineers-in-training, as well as practical engineers who desire a comprehensive understanding of sandwich structures technology.







Structural and Failure Mechanics of Sandwich Composites


Book Description

"Structural and Failure Mechanics of Sandwich Composites" by Leif A. Carlsson and George A. Kardomateas focuses on some important deformation and failure modes of sandwich panels such as global buckling, wrinkling and local instabilities, and face/core debonding. The book also provides the mechanics background necessary for understanding deformation and failure mechanisms in sandwich panels and the response of sandwich structural parts to a variety of loadings. Specifically, first-order and high-order sandwich panel theories, and three-dimensional elasticity solutions for the structural behavior outlined in some detail. Elasticity analysis can serve as a benchmark for judging the accuracy of simplified sandwich plate, shell and beam theories. Furthermore, the book reviews test methods developed for the characterization of the constituent face and core materials, and sandwich beams and plates. The characterization of face/core debonding is a major topic of this text, and analysis methods based on fracture mechanics are described and applied to several contemporary test specimens. Test methods and results documented in the literature are included and discussed. The book will benefit structural and materials engineers and researchers with the desire to learn more about structural behavior, failure mechanisms, fracture mechanics and damage tolerance of sandwich structures.