Analysis and Modelling of Advanced Structures and Smart Systems


Book Description

This book presents selected papers presented at the 8th International Conference "Design, Modeling and Experiments of Advanced Structures and Systems" (DeMEASS VIII, held in Moscow, Russia in May 2017) and reflects the modern state of sciences in this field. The contributions contain topics like Piezoelectric, Ferroelectric, Ferroelastic and Magnetostrictive Materials, Shape Memory Alloys and Active Polymers, Functionally Graded Materials, Multi-Functional Smart Materials and Structures, Coupled Multi-Field Problems, Design and Modeling of Sensors and Actuators, Adaptive Structures.




Piezoelectric Aeroelastic Energy Harvesting


Book Description

Piezoelectric Aeroelastic Energy Harvesting explains the design and implementation of piezoelectric energy harvesting devices based on fluid-structure interaction. There is currently an increase in demand for low power electronic instruments in a range of settings, and recent advances have driven their energy consumption downwards. As a result, the possibility to extract energy from an operational environment is of growing significance to industry and academic research globally. This book solves problems related to the integration of smart structures with the aeroelastic system, addresses the importance of the aerodynamic model on accurate prediction of the performance of the energy harvester, describes the overall effect of the piezoelectric patch on the dynamics of the system, and explains different mechanisms for harvesting energy via fluid-structure interaction. This wealth of innovative technical information is supported by introductory chapters on piezoelectric materials, energy harvesting and circuits, and fluid structure interaction, opening this interdisciplinary topic up for readers with a range of backgrounds. - Provides new designs of piezoelectric energy harvesters for fluid-structure interaction - Explains how to correctly model aerodynamics for effective aeroelastic energy harvesting - Numerical examples allow the reader to practice the design, modeling and implementation of piezoelectric energy harvesting devices




Proceedings of the 14th International Conference on Vibration Problems


Book Description

This book presents the select proceedings of the 14th International Conference on Vibration Problems (ICOVP 2019) held in Crete, Greece. The volume brings together contributions from researchers working on vibration related problems in a wide variety of engineering disciplines such as mechanical engineering, wind and earthquake engineering, nuclear engineering, aeronautics, robotics, and transport systems. The focus is on latest developments and cutting-edge methods in wave mechanics and vibrations, and includes theoretical, experimental, as well as applied studies. The range of topics and the up-to-date results covered in this volume make this interesting for students, researchers, and professionals alike.




Advanced Ferroelectric And Piezoelectric Materials: With Improved Properties And Their Applications


Book Description

Discover the latest advances in ferroelectric and piezoelectric material sciences with this comprehensive monograph, divided into six chapters, each offering unique insights into the field.Chapter 1 delves into the manufacture and study of new ceramic materials, focusing on complex oxides of various metals (Aurivillius phases). The authors explore layered bismuth titanates and niobates, known for their high Curie temperature, and discuss how varying their chemical composition can lead to significant changes in their electrophysical properties. Chapter 2 explores the fascinating world of ferroelectrics — dielectrics with spontaneous polarization. Mathematical models and approaches of fractional calculus are used to understand the process of polarization switching in these materials, shedding light on the fractality of electrical responses. In Chapter 3, readers gain valuable insights into the inhomogeneous polarization process of polycrystalline ferroelectrics, a crucial stage in creating piezoceramic samples for energy converters. The authors present a comprehensive mathematical model that allows the determination of various characteristics, including dielectric and piezoelectric hysteresis loops and the effect of attenuation processes.Chapter 4 focuses on state-of-the-art piezoelectric energy harvesting, discussing theoretical, experimental, and computer modelling approaches. The authors discuss piezoelectric generators (PEGs) of different types (cantilever, stack and axis) and nonlinear effects arising at their operation. Chapter 5 presents expanded test and finite element models for cantilever-type and axial-type PEGs with active elements. The studies cover various structural and electric schemes of the PEGs with proof mass, bimorph and cylindrical piezoelectric elements, and excitation loads. Finally, Chapter 6 reviews some results in the last five years, obtained in modelling the vibration of devices from piezoactive materials, including five important effects: piezoelectric, flexoelectric, pyroelectric, piezomagnetic and flexomagnetic.As a diverse addition to the literature, this book is a relevant resource for researchers, engineers, and students seeking to expand their knowledge of cutting-edge developments in this exciting field.




Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials


Book Description

This book addresses theoretical and experimental methods for exploring microstructured metamaterials, with a special focus on wave dynamics, mechanics, and related physical properties. The authors use various mathematical and physical approaches to examine the mechanical properties inherent to particular types of metamaterials. These include: • Boundary value problems in reduced strain gradient elasticity for composite fiber-reinforced metamaterials • Self-organization of molecules in ferroelectric thin films • Combined models for surface layers of nanostructures • Computer simulation at the micro- and nanoscale • Surface effects with anisotropic properties and imperfect temperature contacts • Inhomogeneous anisotropic metamaterials with uncoupled and coupled surfaces or interfaces • Special interface finite elements and other numerical and analytical methods for composite structures




Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020)


Book Description

This book presents selected, peer-reviewed proceedings of the 2nd International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020), held in the city of Nha Trang, Vietnam, from 12 to 15 November, 2020. The purpose of the conference is to explore and ensure an understanding of the critical aspects contributing to sustainable development, especially materials, machines and methods. The contributions published in this book come from authors representing universities, research institutes and industrial companies, and reflect the results of a very broad spectrum of research, from micro- and nanoscale materials design and processing, to mechanical engineering technology in industry. Many of the contributions selected for these proceedings focus on materials modeling, eco-material processes and mechanical manufacturing.




Recent Developments in the Theory of Shells


Book Description

This book commemorates the 80th birthday of Prof. W. Pietraszkiewicz, a prominent specialist in the field of general shell theory. Reflecting Prof. Pietraszkiewicz’s focus, the respective papers address a range of current problems in the theory of shells. In addition, they present other structural mechanics problems involving dimension-reduced models. Lastly, several applications are discussed, including material models for such dimension-reduced structures.




Physics and Mechanics of New Materials and Their Applications


Book Description

This book presents selected peer-reviewed contributions from the 2020 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2020 (26–29 March 2021, Kitakyushu, Japan), focusing on processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystal structures, materials, and composites with unique properties. It presents nanotechnological design approaches, environmental-friendly processing techniques, and physicochemical as well as mechanical studies of advanced materials. The selected contributions describe recent progress in computational materials science methods and algorithms (in particular, finite-element and finite-difference modelling) applied to various technological, mechanical, and physical problems. The presented results are important for ongoing efforts concerning the theory, modelling, and testing of advanced materials. Other results are devoted to promising devices with higher accuracy, increased longevity, and greater potential to work effectively under critical temperatures, high pressure, and in aggressive environments.




Piezoelectric Actuators and Generators for Energy Harvesting


Book Description

This book presents new approaches to R&D of piezoelectric actuators and generators of different types based on established, original constructions and contemporary research into framework of theoretical, experimental, and numerical methods of physics, mechanics, and materials science. Improved technical solutions incorporated into the devices demonstrate high output values of voltage and power, allowing application of the goods in various areas of energy harvesting. The book is divided into seven chapters, each presenting main results of the chapter, along with a brief exposition of novel findings from around the world proving context for the author’s results. It presents particular results of the Soviet and Russian schools of Mechanics and Material Sciences not previously available outside of Russia.




Parallel Computing Technologies


Book Description

This book constitutes the proceedings of the 16th International Conference on Parallel Computing Technologies, PaCT 2021, which was held during September 13-18, 2021. The conference was planned to take place in Kaliningrad, Russia, but changed to an online event due to the COVID-19 pandemic. The 24 full and 12 short papers included in this book were carefully reviewed and selected from 62 submissions. They were organized in topical sections as follows: parallel programming methods and tools; applications; memory-efficient data structures; experimental studies; job management; essential algorithms; computing services; and cellular automata.