Analysis and Optimization for Robust Millimeter-Wave Communications


Book Description

Spectrum scarcity is a longstanding problem in mobile telecommunications networks. Specifically, accommodating the ever-growing data rate and communications demand in the extensively used spectrum between 800 MHz and 6 GHz is becoming more challenging. For this reason, in the last years, communications in the millimeterwave (mm-wave) frequency range (30-300 GHz) have attracted the interest of many researchers, who consider mm-wave communications a key enabler for upcoming generations of mobile communications, i.e., 5G and 6G. However, the signal propagation in the mm-wave frequency range is subject to more challenging conditions. High path loss and penetration loss may lead to short-range communications and frequent transmission interruptions when the signal path between the transmitter and the receiver is blocked. In this dissertation, we analyze and optimize techniques that enhance the robustness and reliability of mm-wave communications. In the first part, we focus on approaches that allow user equipment (UE) to establish and maintain connections with multiple access points (APs) or relays, i.e., multi-connectivity (MC) and relaying techniques, to increase link failure robustness. In such scenarios, an inefficient link scheduling, i.e., over or under-provisioning of connections, can lead to either high interference and energy consumption or unsatisfied user’s quality of service (QoS) requirements. In the first paper, we propose a novel link scheduling algorithm for network throughput maximization with constrained resources and quantify the potential gain of MC. As a complementary approach, in the second paper, we solve the problem of minimizing allocated resources while satisfying users’ QoS requirements for mm-wave MC scenarios. To deal with the channel uncertainty and abrupt blockages, we propose a learning-based solution, of which the results highlight the tradeoff between reliability and allocated resource. In the third paper, we perform throughput and delay analysis of a multi-user mm-wave wireless network assisted by a relay. We show the benefits of cooperative networking and the effects of directional communications on relay-aided mm-wave communications. These, as highlighted by the results, are characterized by a tradeoff between throughput and delay and are highly affected by the beam alignment duration and transmission strategy (directional or broadcast). The second part of this dissertation focuses on problems related to mm-wave communications in industrial scenarios, where robots and new industrial applications require high data rates, and stringent reliability and latency requirements. In the fourth paper, we consider a multi-AP mm-wave wireless network covering an industrial plant where multiple moving robots need to be connected. We show how the joint optimization of robots’ paths and the robot-AP associations can increase mm-wave robustness by decreasing the number of handovers and avoiding coverage holes. Finally, the fifth paper considers scenarios where robot-AP communications are assisted by an intelligent reflective surface (IRS). We show that the joint optimization of beamforming and trajectory of the robot can minimize the motion energy consumption while satisfying time and communication QoS constraints. Moreover, the proposed solution exploits a radio map to prevent collisions with obstacles and to increase mm-wave communication robustness by avoiding poorly covered areas.




Millimeter-Wave (mmWave) Communications


Book Description

The millimeter-wave frequency band (30–300 GHz) is considered a potential candidate to host very high data rate communications. First used for high capacity radio links and then for broadband indoor wireless networks, the interest in this frequency band has increased as it is proposed to accommodate future 5G mobile communication systems. The large bandwidth available will enable a number of new uses for 5G. In addition, due to the large propagation attenuation, this frequency band may provide some additional advantages regarding frequency reuse and communication security. However, a number of issues have to be addressed to make mm-wave communications viable. This book collects a number of contributions that present solutions to these challenges.




Millimeter Wave Link Configuration Robust to Radio Frequency Impairments


Book Description

Millimeter wave (mmWave) bands offer several gigahertz of bandwidth that can support high data rate applications. To efficiently use the spectrum at mmWave frequencies, the wireless link between the transmitting and receiving radios must be configured properly. The link configuration problem at mmWave, however, is challenging due to the use of large antenna arrays and radio frequency (RF) impairments that are less severe in common lower frequency systems. Some of these impairments include the low resolution of RF phase shifters, carrier frequency offset, and the misfocus effect in near field systems with large arrays. An important characteristic of mmWave multiple-input multiple-output (MIMO) channels is sparsity. The sparse nature of such channels has allowed the use of compressed sensing (CS) for fast link configuration through channel estimation or beam alignment. CS techniques usually involve random sensing matrices to acquire a compressed channel representation and an optimization algorithm to estimate the sparse channel. Unfortunately, common random CS matrices result in poor link configuration under RF impairments. In the first part of this dissertation, we construct a new class of CS matrices that achieve robustness to the low resolution of RF phase shifters and the carrier frequency offset. To aid our construction, we propose a framework called FALP and develop an algorithm called Swift-Link within this framework. Swift-Link achieves better beam alignment than standard CS-based solutions at a reduced computational complexity. In the second part of this dissertation, we investigate the misfocus effect in near field beamforming. The beams in a near field communication scenario can focus RF signals in a spatial region called the focal point. The focal point, however, changes with the frequency of operation in a wideband phased array that uses a center frequency-based beamformer. This effect called misfocus, reduces the effective operating bandwidth of the near field system. To mitigate the misfocus effect, we propose a technique called InFocus that constructs beams which are well suited for massive wideband phased arrays. InFocus enables massive wideband phased array-based radios to achieve a higher data rate than comparable beamforming solutions




Soft Computing Methods for Microwave and Millimeter-Wave Design Problems


Book Description

The growing commercial market of Microwave/ Millimeter wave industry over the past decade has led to the explosion of interests and opportunities for the design and development of microwave components.The design of most microwave components requires the use of commercially available electromagnetic (EM) simulation tools for their analysis. In the design process, the simulations are carried out by varying the design parameters until the desired response is obtained. The optimization of design parameters by manual searching is a cumbersome and time consuming process. Soft computing methods such as Genetic Algorithm (GA), Artificial Neural Network (ANN) and Fuzzy Logic (FL) have been widely used by EM researchers for microwave design since last decade. The aim of these methods is to tolerate imprecision, uncertainty, and approximation to achieve robust and low cost solution in a small time frame. Modeling and optimization are essential parts and powerful tools for the microwave/millimeter wave design. This book deals with the development and use of soft computing methods for tackling challenging design problems in the microwave/millimeter wave domain. The aim in the development of these methods is to obtain the design in small time frame while improving the accuracy of the design for a wide range of applications. To achieve this goal, a few diverse design problems of microwave field, representing varied challenges in the design, such as different microstrip antennas, microwave filters, a microstrip-via and also some critical high power components such as nonlinear tapers and RF-windows are considered as case-study design problems. Different design methodologies are developed for these applications. The presents soft computing methods, their review for microwave/millimeter wave design problems and specific case-study problems to infuse better insight and understanding of the subject.




ICT Analysis and Applications


Book Description

This book proposes new technologies and discusses future solutions for ICT design infrastructures, as reflected in high-quality papers presented at the 8th International Conference on ICT for Sustainable Development (ICT4SD 2023), held in Goa, India, on August 3–4, 2023. The book covers the topics such as big data and data mining, data fusion, IoT programming toolkits and frameworks, green communication systems and network, use of ICT in smart cities, sensor networks and embedded system, network and information security, wireless and optical networks, security, trust, and privacy, routing and control protocols, cognitive radio and networks, and natural language processing. Bringing together experts from different countries, the book explores a range of central issues from an international perspective.




UAV Communications for 5G and Beyond


Book Description

Explore foundational and advanced issues in UAV cellular communications with this cutting-edge and timely new resource UAV Communications for 5G and Beyond delivers a comprehensive overview of the potential applications, networking architectures, research findings, enabling technologies, experimental measurement results, and industry standardizations for UAV communications in cellular systems. The book covers both existing LTE infrastructure, as well as future 5G-and-beyond systems. UAV Communications covers a range of topics that will be of interest to students and professionals alike. Issues of UAV detection and identification are discussed, as is the positioning of autonomous aerial vehicles. More fundamental subjects, like the necessary tradeoffs involved in UAV communication are examined in detail. The distinguished editors offer readers an opportunity to improve their ability to plan and design for the near-future, explosive growth in the number of UAVs, as well as the correspondingly demanding systems that come with them. Readers will learn about a wide variety of timely and practical UAV topics, like: Performance measurement for aerial vehicles over cellular networks, particularly with respect to existing LTE performance Inter-cell interference coordination with drones Massive multiple-input and multiple-output (MIMO) for Cellular UAV communications, including beamforming, null-steering, and the performance of forward-link C&C channels 3GPP standardization for cellular-supported UAVs, including UAV traffic requirements, channel modeling, and interference challenges Trajectory optimization for UAV communications Perfect for professional engineers and researchers working in the field of unmanned aerial vehicles, UAV Communications for 5G and Beyond also belongs on the bookshelves of students in masters and PhD programs studying the integration of UAVs into cellular communication systems.




Millimeter Wave Wireless Communications


Book Description

The Definitive, Comprehensive Guide to Cutting-Edge Millimeter Wave Wireless Design “This is a great book on mmWave systems that covers many aspects of the technology targeted for beginners all the way to the advanced users. The authors are some of the most credible scholars I know of who are well respected by the industry. I highly recommend studying this book in detail.” —Ali Sadri, Ph.D., Sr. Director, Intel Corporation, MCG mmWave Standards and Advanced Technologies Millimeter wave (mmWave) is today's breakthrough frontier for emerging wireless mobile cellular networks, wireless local area networks, personal area networks, and vehicular communications. In the near future, mmWave products, systems, theories, and devices will come together to deliver mobile data rates thousands of times faster than today's existing cellular and WiFi networks. In Millimeter Wave Wireless Communications, four of the field's pioneers draw on their immense experience as researchers, entrepreneurs, inventors, and consultants, empowering engineers at all levels to succeed with mmWave. They deliver exceptionally clear and useful guidance for newcomers, as well as the first complete desk reference for design experts. The authors explain mmWave signal propagation, mmWave circuit design, antenna designs, communication theory, and current standards (including IEEE 802.15.3c, Wireless HD, and ECMA/WiMedia). They cover comprehensive mmWave wireless design issues, for 60 GHz and other mmWave bands, from channel to antenna to receiver, introducing emerging design techniques that will be invaluable for research engineers in both industry and academia. Topics include Fundamentals: communication theory, channel propagation, circuits, antennas, architectures, capabilities, and applications Digital communication: baseband signal/channel models, modulation, equalization, error control coding, multiple input multiple output (MIMO) principles, and hardware architectures Radio wave propagation characteristics: indoor and outdoor applications Antennas/antenna arrays, including on-chip and in-package antennas, fabrication, and packaging Analog circuit design: mmWave transistors, fabrication, and transceiver design approaches Baseband circuit design: multi–gigabit-per-second, high-fidelity DAC and ADC converters Physical layer: algorithmic choices, design considerations, and impairment solutions; and how to overcome clipping, quantization, and nonlinearity Higher-layer design: beam adaptation protocols, relaying, multimedia transmission, and multiband considerations 60 GHz standardization: IEEE 802.15.3c for WPAN, Wireless HD, ECMA-387, IEEE 802.11ad, Wireless Gigabit Alliance (WiGig)




Digitally Assisted, Fully Integrated, Wideband Transmitters for High-Speed Millimeter-Wave Wireless Communication Links


Book Description

This book presents design methods and considerations for digitally-assisted wideband millimeter-wave transmitters. It addresses comprehensively both RF design and digital implementation simultaneously, in order to design energy- and cost-efficient high-performance transmitters for mm-wave high-speed communications. It covers the complete design flow, from link budget assessment to the transistor-level design of different RF front-end blocks, such as mixers and power amplifiers, presenting different alternatives and discussing the existing trade-offs. The authors also analyze the effect of the imperfections of these blocks in the overall performance, while describing techniques to correct and compensate for them digitally. Well-known techniques are revisited, and some new ones are described, giving examples of their applications and proving them in real integrated circuits.







Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications


Book Description

This book presents the technology of millimetre waves and Terahertz (THz) antennas. It highlights the importance of moderate and high-gain aperture antennas as key devices for establishing point-to-point and point-to-multipoint radio links for far-field and near-field applications, such as high data-rate communications, intelligent transport, security imaging, exploration and surveillance systems. The book provides a comprehensive overview of the key antenna technologies developed for the mm wave and THz domains, including established ones – such as integrated lens antennas, advanced 2D and 3D horn antennas, transmit and reflect arrays, and Fabry-Perot antennas – as well as emerging metasurface antennas for near-field and far-field applications. It describes the pros and cons of each antenna technology in comparison with other available solutions, a discussion supplemented by practical examples illustrating the step-by-step implementation procedures for each antenna type. The measurement techniques available at these frequency ranges are also presented to close the loop of the antenna development cycle. In closing, the book outlines future trends in various antenna technologies, paving the way for further developments. Presenting content originating from the five-year ESF research networking program ‘Newfocus’ and co-authored by the most active and highly cited research groups in the domain of mm- and sub-mm-wave antenna technologies, the book offers a valuable guide for researchers and engineers in both industry and academia.