Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs


Book Description

The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.







From Classical Analysis to Analysis on Fractals


Book Description

Over the course of his distinguished career, Robert Strichartz (1943-2021) had a substantial impact on the field of analysis with his deep, original results in classical harmonic, functional, and spectral analysis, and in the newly developed analysis on fractals. This is the first volume of a tribute to his work and legacy, featuring chapters that reflect his mathematical interests, written by his colleagues and friends. An introductory chapter summarizes his broad and varied mathematical work and highlights his profound contributions as a mathematical mentor. The remaining articles are grouped into three sections – functional and harmonic analysis on Euclidean spaces, analysis on manifolds, and analysis on fractals – and explore Strichartz’ contributions to these areas, as well as some of the latest developments.




Recent Developments in Operator Theory, Mathematical Physics and Complex Analysis


Book Description

This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.




Geometric Potential Analysis


Book Description

This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.




The Sub-Laplacian Operators of Some Model Domains


Book Description

The book studies sub-Laplacian operators on a family of model domains in C^{n+1}, which is a good point-wise model for a $CR$ manifold with non-degenerate Levi form. A considerable amount of study has been devoted to partial differential operators constructed from non-commuting vector fields, in which the non-commutativity plays an essential role in determining the regularity properties of the operators.




Real Hypersurfaces in Hermitian Symmetric Spaces


Book Description

Hermitian symmetric spaces are an important class of manifolds that can be studied with methods from Kähler geometry and Lie theory. This work gives an introduction to Hermitian symmetric spaces and their submanifolds, and presents classification results for real hypersurfaces in these spaces, focusing on results obtained by Jürgen Berndt and Young Jin Suh in the last 20 years.




Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces


Book Description

This volume contains the expanded lecture notes of courses taught at the Emile Borel Centre of the Henri Poincare Institute (Paris). In the book, leading experts introduce recent research in their fields. The unifying theme is the study of heat kernels in various situations using related geometric and analytic tools. Topics include analysis of complex-coefficient elliptic operators, diffusions on fractals and on infinite-dimensional groups, heat kernel and isoperimetry on Riemannian manifolds, heat kernels and infinite dimensional analysis, diffusions and Sobolev-type spaces on metric spaces, quasi-regular mappings and $p$-Laplace operators, heat kernel and spherical inversion on $SL 2(C)$, random walks and spectral geometry on crystal lattices, isoperimetric and isocapacitary inequalities, and generating function techniques for random walks on graphs. This volume is suitable for graduate students and research mathematicians interested in random processes and analysis on manifolds.




Graphs, Matrices, and Designs


Book Description

Examines partitions and covers of graphs and digraphs, latin squares, pairwise balanced designs with prescribed block sizes, ranks and permanents, extremal graph theory, Hadamard matrices and graph factorizations. This book is designed to be of interest to applied mathematicians, computer scientists and communications researchers.




New Trends in Stochastic Analysis and Related Topics


Book Description

The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.