Structural Dynamics


Book Description

The proceedings contain contributions presented by authors from more than 30 countries at EURODYN 2002. The proceedings show recent scientific developments as well as practical applications, they cover the fields of theory of vibrations, nonlinear vibrations, stochastic dynamics, vibrations of structured elements, wave propagation and structure-borne sound, including questions of fatigue and damping. Emphasis is laid on vibrations of bridges, buildings, railway structures as well as on the fields of wind and earthquake engineering, repectively. Enriched by a number of keynote lectures and organized sessions the two volumes of the proceedings present an overview of the state of the art of the whole field of structural dynamics and the tendencies ot its further development.




Safety, Reliability and Risk Analysis


Book Description

Safety, Reliability and Risk Analysis. Theory, Methods and Applications contains the papers presented at the joint ESREL (European Safety and Reliability) and SRA-Europe (Society for Risk Analysis Europe) Conference (Valencia, Spain, 22-25 September 2008). The book covers a wide range of topics, including: Accident and Incident Investigation; Crisi




Time-Dependent Reliability Theory and Its Applications


Book Description

Time-Dependent Reliability Theory and Its Applications introduces the theory of time-dependent reliability and presents methods to determine the reliability of structures over the lifespan of their services. The book contains state-of-the-art solutions to first passage probability derived from the theory of stochastic processes with different types of probability distribution functions, including Gaussian and non-Gaussian distributions and stationary and non-stationary processes. In addition, it provides various methods to determine the probability of failure over time, considering different failure modes and a methodology to predict the service life of structures. Sections also cover the applications of time-dependent reliability to prediction of service life and development of risk cost-optimized maintenance strategy for existing structures. This new book is for those who wants to know how to predict the service life of a structure (buildings, bridges, aircraft structures, etc.) and how to develop a risk-cost, optimized maintenance strategy for these structures. - Presents the basic knowledge required to predict service life and develop a maintenance strategy for infrastructure - Explains how to predict the remaining safe life of the infrastructure during its lifespan of operation - Describes how to carry out maintenance for an infrastructure to ensure its safe and serviceable operation during the designed service life




Advances in Reliability and Safety Assessment for Critical Systems


Book Description

This book comprises select proceedings of the 5th National Conference on Reliability and Safety (NCRS 2022). It provides comprehensive state-of-the-art research and development in diverse areas like reliability prediction, precursor event analysis, fuzzy reliability, structural reliability, passive system reliability, digital system reliability, risk informed approach to decision making, dynamic PSA, uncertainty and sensitivity modeling, among others. The book is a valuable resource for researchers and professionals working in both academia and industry in the areas of complex systems, safety critical systems and risk-based engineering.




Structural Reliability


Book Description

STRUCTURAL RELIABILITY Discover a new and innovative approach to structural reliability from two authoritative and accomplished authors The subject of structural reliability, which deals with the problems of evaluating the safety and risk posed by a wide variety of structures, has grown rapidly over the last four decades. And while the First-Order Reliability Method is principally used by most textbooks on this subject, other approaches have identified some of the limitations of that method. In Structural Reliability: Approaches from Perspectives of Statistical Moments, accomplished engineers and authors Yan-Gang Zhao and Dr. Zhao-Hui Lu, deliver a concise and insightful exploration of an alternative and innovative approach to structural reliability. Called the Methods of Moment, the authors’ approach is based on the information of statistical moments of basic random variables and the performance function. The Methods of Moment approach facilitates ­structural reliability analysis and reliability-based design and can be extended to other engineering disciplines, yielding further insights into challenging problems involving ­randomness. Readers will also benefit from the inclusion of: A thorough introduction to the measures of structural safety, including uncertainties in structural design, deterministic measures of safety, and probabilistic measures of safety An exploration of the fundamentals of structural reliability theory, including the performance function and failure probability A practical discussion of moment evaluation for performance functions, including moment computation for both explicit and implicit performance functions A concise treatment of direct methods of moment, including the third- and fourth-moment reliability methods Perfect for professors, researchers, and graduate students in civil engineering, Structural Reliability: Approaches from Perspectives of Statistical Moments will also earn a place in the libraries of professionals and students working or studying in mechanical engineering, aerospace and aeronautics engineering, marine and offshore engineering, ship engineering, and applied mechanics.




Hydro-Environmental Analysis


Book Description

Focusing on fundamental principles, Hydro-Environmental Analysis: Freshwater Environments presents in-depth information about freshwater environments and how they are influenced by regulation. It provides a holistic approach, exploring the factors that impact water quality and quantity, and the regulations, policy and management methods that are necessary to maintain this vital resource. It offers a historical viewpoint as well as an overview and foundation of the physical, chemical, and biological characteristics affecting the management of freshwater environments. The book concentrates on broad and general concepts, providing an interdisciplinary foundation. The author covers the methods of measurement and classification; chemical, physical, and biological characteristics; indicators of ecological health; and management and restoration. He also considers common indicators of environmental health; characteristics and operations of regulatory control structures; applicable laws and regulations; and restoration methods. The text delves into rivers and streams in the first half and lakes and reservoirs in the second half. Each section centers on the characteristics of those systems and methods of classification, and then moves on to discuss the physical, chemical, and biological characteristics of each. In the section on lakes and reservoirs, it examines the characteristics and operations of regulatory structures, and presents the methods commonly used to assess the environmental health or integrity of these water bodies. It also introduces considerations for restoration, and presents two unique aquatic environments: wetlands and reservoir tailwaters. Written from an engineering perspective, the book is an ideal introduction to the aquatic and limnological sciences for students of environmental science, as well as students of environmental engineering. It also serves as a reference for engineers and scientists involved in the management, regulation, or restoration of freshwater environments.




High-Rise Buildings under Multi-Hazard Environment


Book Description

This book discusses performance-based seismic and wind-resistant design for high-rise building structures, with a particular focus on establishing an integrated approach for performance-based wind engineering, which is currently less advanced than seismic engineering. This book also provides a state-of-the-art review of numerous methodologies, including computational fluid dynamics (CFD), extreme value analysis, structural optimization, vibration control, pushover analysis, response spectrum analysis, modal parameter identification for the assessment of the wind-resistant and seismic performance of tall buildings in the design stage and actual tall buildings in use. Several new structural optimization methods, including the augmented optimality criteria method, have been developed and employed in the context of performance-based design. This book is a valuable resource for students, researchers and engineers in the field of civil and structural engineering.




Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures


Book Description

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str




Fuzzy Randomness


Book Description

sections dealing with fuzzy functions and fuzzy random functions are certain to be of special interest. The reader is expected to be in command of the knowledge gained in a basic university mathematics course, with the inclusion of stochastic elements. A specification of uncertainty in any particular case is often difficult. For this reason Chaps. 3 and 4 are devoted solely to this problem. The derivation of fuzzy variables for representing informal and lexical uncertainty reflects the subjective assessment of objective conditions in the form of a membership function. Techniques for modeling fuzzy random variables are presented for data that simultaneously exhibit stochastic and nonstochastic properties. The application of fuzzy randomness is demonstrated in three fields of civil engineering and computational mechanics: structural analysis, safety assessment, and design. The methods of fuzzy structural analysis and fuzzy probabilistic structural analysis developed in Chap. 5 are applicable without restriction to arbitrary geometrically and physically nonlinear problems. The most important forms of the latter are the Fuzzy Finite Element Method (FFEM) and the Fuzzy Stochastic Finite Element Method (FSFEM).