Diffraction Gratings and Applications


Book Description

"Offers and up-to-date assessment of the entire field of diffraction gratings, including history, physics, manufacture, testing, and instrument design. Furnishes--for the first time in a single-source reference--a thorough review of efficiency behavior, examining echelles as well as concave, binary, transmission, fiber, and waveguide gratings."







Principles, Design, Fabrication, and Characterization of Subwavelength Periodic Resonant Metasurfaces


Book Description

Since the emergence of diffraction gratings containing periodic unit cells, innumerable advances in theoretical studies and practical applications have emerged. Recently, these classic structures have been categorized as subsets of "meta-surfaces" or "meta-materials" in which periodically aligned wavelength-scale features manipulate all key properties of the electromagnetic waves in a desired manner for a wide variety of applications. This includes manipulating of amplitude, phase, spectral distribution, polarization state, and local mode structure of light in the various available spectral expressions. Among the significant characteristic properties of metasurfaces is the coupling of incident light to laterally propagating leaky Bloch modes in the subwavelength regime when the periodicity of the unit cell is moderately smaller than the free-space wavelength. This property, which manifests itself as a resonance at certain wavelengths, is called "guided mode resonance (GMR)" or "leaky mode resonance (LMR)". These structures offer novel properties and functionalities in ultra-thin device dimensions which make them potential replacements for conventional and bulky optical devices. Extensive studies have been conducted to realize the periodic structures in different materials (metals, dielectric, and semiconductors or their hybrid compositions) employing various fabrication methods for different wavelength ranges in 1D or 2D configuration. Thus, on account of the wide variety of material compositions and lattice architectures, the design space is vast. Various numerical techniques such as rigorous coupled-wave analysis (RCWA), finite element method (FEM), and finite-difference time-domain (FDTD) can be used to implement simulations and obtain the precise optical responses of the metasurfaces. In addition, inverse optimization methods, efficiently provide optimized physical parameters in order to obtain a particular desired spectral response. However, these computational methods which are based on solving heavy and complicated equations and do not always provide comprehensive insight into underlying physics of the numerically obtained optical spectra.In this dissertation, we present a comprehensive physical description of resonant metasurfaces based on exact solutions of the Rytov formulation. We define a clear transition wavelength between the resonance subwavelength region and the deep-subwavelength region. This transition point, analytical in a special case, is not available presently in the literature. In addition, we design, fabricate, and characterize various novel GMR-based optical devices such as metamaterial polarizers, nanoimprinted nanocomposite filters, multipart unit-cell metasurfaces, ultrahigh-Q resonant dual-grating metamembranes, and fiber-facet integrated optical filters and sensors.







Modern Theory of Gratings


Book Description

The advances in the theory of diffraction gratings and the applications of these results certainly determine the progress in several areas of applied science and engineering. The polarization converters, phase shifters and filters, quantum and solid-state oscillators, open quasi optical dispersive resonators and power compressors, slow-wave structures and patter forming systems, accelerators and spectrometer; that is still far from being a complete list of devices exploiting the amazing ability of periodic structures to perform controlled frequency, spatial, and polarization selection of signals. Diffraction gratings used to be and still are one of the most popular objects of analysis in electromagnetic theory. The further development of the theory of diffraction gratings, in spite of considerable achievements, is still very important presently. The requirements of applied optics and microwave engineering present the theory of diffraction gratings with many new problems which force us to search for new methods and tools for their resolution. Just in such way there appeared recently new fields, connected with the analysis, synthesis and definition of equivalent parameters of artificial materials – layers and coatings, having periodic structure and possessing features, which can be found in natural materials only in extraordinary or exceptional situations. In this book the authors present results of the electromagnetic theory of diffraction gratings that may constitute the base of further development of this theory which can meet the challenges provided by the most recent requirements of fundamental and applied science. The following issues will be considered in the book Authentic methods of analytical regularization, that perfectly match the requirements of analysis of resonant scattering of electromagnetic waves by gratings; Spectral theory of gratings, providing a reliable foundation for the analysis of spatial – frequency transformations of electromagnetic fields occurring in open periodic resonators and waveguides; Parametric Fourier method and C-method, that are oriented towards the efficient numerical analysis of transformation properties of fields in the case of arbitrary profile periodic boundary between dielectric media and multilayered conformal arrays; Rigorous methods for analysis of transient processes and time-spatial transformations of electromagnetic waves in resonant situations, based on development and incorporation in standard numerical routines of FDTD of so called explicit absorbing boundary conditions; New approaches to the solution of homogenization problems – the key problem arising in construction of metamaterials and meta surfaces; New physical results about the resonance scattering of pulse and monochromatic waves by periodic structures, including structures with chiral or left-handed materials; Methods and the results of the solutions of several actual applied problems of analysis and synthesis of pattern creating gratings, power compressors, resonance radiators of high capacity short radio pulses, open electromagnetic structures for the systems of resonant quasi optics and absorbing coatings.




Issues in Analysis, Measurement, Monitoring, Imaging, and Remote Sensing Technology: 2011 Edition


Book Description

Issues in Analysis, Measurement, Monitoring, Imaging, and Remote Sensing Technology: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Analysis, Measurement, Monitoring, Imaging, and Remote Sensing Technology. The editors have built Issues in Analysis, Measurement, Monitoring, Imaging, and Remote Sensing Technology: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Analysis, Measurement, Monitoring, Imaging, and Remote Sensing Technology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Analysis, Measurement, Monitoring, Imaging, and Remote Sensing Technology: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




VCSELs


Book Description

The huge progress which has been achieved in the field is covered here, in the first comprehensive monograph on vertical-cavity surface-emitting lasers (VCSELs) since eight years. Apart from chapters reviewing the research field and the laser fundamentals, there are comprehensive updates on red and blue emitting VCSELs, telecommunication VCSELs, optical transceivers, and parallel-optical links for computer interconnects. Entirely new contributions are made to the fields of vectorial three-dimensional optical modeling, single-mode VCSELs, polarization control, polarization dynamics, very-high-speed design, high-power emission, use of high-contrast gratings, GaInNAsSb long-wavelength VCSELs, optical video links, VCSELs for optical mice and sensing, as well as VCSEL-based laser printing. The book appeals to researchers, optical engineers and graduate students.




Optical Supercomputing


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Workshop on Optical SuperComputing, OSC 2012, held in Bertinoro, Italy, in July 2012. The 11 papers presented together with 11 invited papers were carefully reviewed and selected for inclusion in this book. Being an annual forum for research presentations on all facets of optical computing for solving hard computation tasks, OCS addresses the following topics of interest: design of optical computing devices, electro-optic devices for interacting with optical computing devices, practical implementations, analysis of existing devices and case studies, optical and laser switching technologies, applications and algorithms for optical devices, alpha particles, X-rays and nano-technologies for optical computing.