Analysis III


Book Description

This third volume concludes our introduction to analysis, wherein we ?nish laying the groundwork needed for further study of the subject. As with the ?rst two, this volume contains more material than can treated in a single course. It is therefore important in preparing lectures to choose a suitable subset of its content; the remainder can be treated in seminars or left to independent study. For a quick overview of this content, consult the table of contents and the chapter introductions. Thisbookisalsosuitableasbackgroundforothercoursesorforselfstudy. We hope that its numerous glimpses into more advanced analysis will arouse curiosity and so invite students to further explore the beauty and scope of this branch of mathematics. In writing this volume, we counted on the invaluable help of friends, c- leagues, sta?, and students. Special thanks go to Georg Prokert, Pavol Quittner, Olivier Steiger, and Christoph Walker, who worked through the entire text cr- ically and so helped us remove errors and make substantial improvements. Our thanks also goes out to Carlheinz Kneisel and Bea Wollenmann, who likewise read the majority of the manuscript and pointed out various inconsistencies. Without the inestimable e?ortofour “typesetting perfectionist”, this volume could not have reached its present form: her tirelessness and patience with T X E and other software brought not only the end product, but also numerous previous versions,to a high degree of perfection. For this contribution, she has our greatest thanks.




Analysis I


Book Description

"This textbook provides an outstanding introduction to analysis. It is distinguished by its high level of presentation and its focus on the essential.'' (Zeitschrift für Analysis und ihre Anwendung 18, No. 4 - G. Berger, review of the first German edition) "One advantage of this presentation is that the power of the abstract concepts are convincingly demonstrated using concrete applications.'' (W. Grölz, review of the first German edition)




Analysis III


Book Description

Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R).




Analysis I


Book Description

This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.




Problems in Mathematical Analysis


Book Description




Topological Methods in Data Analysis and Visualization III


Book Description

This collection of peer-reviewed conference papers provides comprehensive coverage of cutting-edge research in topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The volume also features material on core research challenges such as the representation of large and complex datasets and integrating numerical methods with robust combinatorial algorithms. Reflecting the focus of the TopoInVis 2013 conference, the contributions evince the progress currently being made on finding experimental solutions to open problems in the sector. They provide an inclusive snapshot of state-of-the-art research that enables researchers to keep abreast of the latest developments and provides a foundation for future progress. With papers by some of the world’s leading experts in topological techniques, this volume is a major contribution to the literature in a field of growing importance with applications in disciplines that range from engineering to medicine.







Bayesian Data Analysis, Third Edition


Book Description

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.




Analysis II


Book Description

This is part two of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.




The Analysis of Linear Partial Differential Operators III


Book Description

From the reviews: "Volumes III and IV complete L. Hörmander's treatise on linear partial differential equations. They constitute the most complete and up-to-date account of this subject, by the author who has dominated it and made the most significant contributions in the last decades.....It is a superb book, which must be present in every mathematical library, and an indispensable tool for all - young and old - interested in the theory of partial differential operators." L. Boutet de Monvel in Bulletin of the American Mathematical Society, 1987. "This treatise is outstanding in every respect and must be counted among the great books in mathematics. It is certainly no easy reading (...) but a careful study is extremely rewarding for its wealth of ideas and techniques and the beauty of presentation." J. Brüning in Zentralblatt MATH, 1987.