Analysis, Manifolds and Physics Revised Edition


Book Description

This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.




Analysis, Manifolds and Physics, Part II - Revised and Enlarged Edition


Book Description

Twelve problems have been added to the first edition; four of them are supplements to problems in the first edition. The others deal with issues that have become important, since the first edition of Volume II, in recent developments of various areas of physics. All the problems have their foundations in volume 1 of the 2-Volume set Analysis, Manifolds and Physics. It would have been prohibitively expensive to insert the new problems at their respective places. They are grouped together at the end of this volume, their logical place is indicated by a number of parenthesis following the title.




Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers


Book Description

A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.




Calculus on Manifolds


Book Description

This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.




Manifolds, Tensor Analysis, and Applications


Book Description

The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.




Tensor Analysis on Manifolds


Book Description

DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div




Tensors and Manifolds


Book Description

This book sets forth the basic principles of tensors and manifolds and describes how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics.







Mathematical Physics


Book Description

For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.




Heat Kernel and Analysis on Manifolds


Book Description

The heat kernel has long been an essential tool in both classical and modern mathematics but has become especially important in geometric analysis as a result of major innovations beginning in the 1970s. The methods based on heat kernels have been used in areas as diverse as analysis, geometry, and probability, as well as in physics. This book is a comprehensive introduction to heat kernel techniques in the setting of Riemannian manifolds, which inevitably involves analysis of the Laplace-Beltrami operator and the associated heat equation. The first ten chapters cover the foundations of the subject, while later chapters deal with more advanced results involving the heat kernel in a variety of settings. The exposition starts with an elementary introduction to Riemannian geometry, proceeds with a thorough study of the spectral-theoretic, Markovian, and smoothness properties of the Laplace and heat equations on Riemannian manifolds, and concludes with Gaussian estimates of heat kernels. Grigor'yan has written this book with the student in mind, in particular by including over 400 exercises. The text will serve as a bridge between basic results and current research.Titles in this series are co-published with International Press, Cambridge, MA, USA.