The Analysis of Covariance and Alternatives


Book Description

A complete guide to cutting-edge techniques and best practices for applying covariance analysis methods The Second Edition of Analysis of Covariance and Alternatives sheds new light on its topic, offering in-depth discussions of underlying assumptions, comprehensive interpretations of results, and comparisons of distinct approaches. The book has been extensively revised and updated to feature an in-depth review of prerequisites and the latest developments in the field. The author begins with a discussion of essential topics relating to experimental design and analysis, including analysis of variance, multiple regression, effect size measures and newly developed methods of communicating statistical results. Subsequent chapters feature newly added methods for the analysis of experiments with ordered treatments, including two parametric and nonparametric monotone analyses as well as approaches based on the robust general linear model and reversed ordinal logistic regression. Four groundbreaking chapters on single-case designs introduce powerful new analyses for simple and complex single-case experiments. This Second Edition also features coverage of advanced methods including: Simple and multiple analysis of covariance using both the Fisher approach and the general linear model approach Methods to manage assumption departures, including heterogeneous slopes, nonlinear functions, dichotomous dependent variables, and covariates affected by treatments Power analysis and the application of covariance analysis to randomized-block designs, two-factor designs, pre- and post-test designs, and multiple dependent variable designs Measurement error correction and propensity score methods developed for quasi-experiments, observational studies, and uncontrolled clinical trials Thoroughly updated to reflect the growing nature of the field, Analysis of Covariance and Alternatives is a suitable book for behavioral and medical scineces courses on design of experiments and regression and the upper-undergraduate and graduate levels. It also serves as an authoritative reference work for researchers and academics in the fields of medicine, clinical trials, epidemiology, public health, sociology, and engineering.




Analysis of Covariance


Book Description

This series of methodological works provides introductory explanations and demonstration of various data analysis techniques applicable to the social sciences. Designed for readers with a limited background in statistics or mathematics, this series aims to make the assumptions and practices of quantitative analysis more readily accessible.




Analysis of Covariance:


Book Description

The Analysis of Covariance is a wonderful, clever, perhaps ingenious and inspirational technique for using statistical projections to adjust predictor variables in groups which are biased due to inequities in variables initially used to create these groups. In Biology, Psychology, Sociology, Business, Psycho-Dynamics in Human Relations, and Medicine, for example, groups used in experiments are often not equated on initial variables which can be experimentally controlled. Therefore, these inequities on initial variables ordinarily would bias results when different treatments are applied to these groups. However, using Analysis of Covariance, through a fascinating statistical application of projections, these diverse groups can be balanced through solely statistical means, to give highly accurate group comparisons. This material would be ideal for all students of mathematics, social science, and science who desire an absolutely readable and enjoyable walk through a fascinating subject, with each step thoroughly understandable. In addition to being very practical and useful, students who had found statistics complex and difficult may now be greatly surprised at their understanding, great interest, and enthusiasm for this subject. In high schools, this book may be a great supplement to courses in statistics, and, particularly, in Advanced Placement Statistics. In colleges, and in advanced high schools, in addition to supplementing statistics courses, the text may be of great value in courses with a research component, as Experimental Psychology, and Experimental Biology.




Analysis of Variance and Covariance


Book Description

Analysis of variance (ANOVA) is a core technique for analysing data in the Life Sciences. This reference book bridges the gap between statistical theory and practical data analysis by presenting a comprehensive set of tables for all standard models of analysis of variance and covariance with up to three treatment factors. The book will serve as a tool to help post-graduates and professionals define their hypotheses, design appropriate experiments, translate them into a statistical model, validate the output from statistics packages and verify results. The systematic layout makes it easy for readers to identify which types of model best fit the themes they are investigating, and to evaluate the strengths and weaknesses of alternative experimental designs. In addition, a concise introduction to the principles of analysis of variance and covariance is provided, alongside worked examples illustrating issues and decisions faced by analysts.




Encyclopedia of Quality of Life and Well-Being Research


Book Description

The aim of this encyclopedia is to provide a comprehensive reference work on scientific and other scholarly research on the quality of life, including health-related quality of life research or also called patient-reported outcomes research. Since the 1960s two overlapping but fairly distinct research communities and traditions have developed concerning ideas about the quality of life, individually and collectively, one with a fairly narrow focus on health-related issues and one with a quite broad focus. In many ways, the central issues of these fields have roots extending to the observations and speculations of ancient philosophers, creating a continuous exploration by diverse explorers in diverse historic and cultural circumstances over several centuries of the qualities of human existence. What we have not had so far is a single, multidimensional reference work connecting the most salient and important contributions to the relevant fields. Entries are organized alphabetically and cover basic concepts, relatively well established facts, lawlike and causal relations, theories, methods, standardized tests, biographic entries on significant figures, organizational profiles, indicators and indexes of qualities of individuals and of communities of diverse sizes, including rural areas, towns, cities, counties, provinces, states, regions, countries and groups of countries.




Categorical Data Analysis Using the SAS System


Book Description

Discusses hypothesis testing strategies for the assessment of association in contingency tables and sets of contingency tables. Also discusses various modeling strategies available for describing the nature of the association between a categorical outcome measure and a set of explanatory variables.




Statistical Analysis Quick Reference Guidebook


Book Description

A practical `cut to the chaseā€² handbook that quickly explains the when, where, and how of statistical data analysis as it is used for real-world decision-making in a wide variety of disciplines. In this one-stop reference, the authors provide succinct guidelines for performing an analysis, avoiding pitfalls, interpreting results and reporting outcomes.




Analysis of Messy Data, Volume III


Book Description

Analysis of covariance is a very useful but often misunderstood methodology for analyzing data where important characteristics of the experimental units are measured but not included as factors in the design. Analysis of Messy Data, Volume 3: Analysis of Covariance takes the unique approach of treating the analysis of covariance problem by looking




ANOVA and ANCOVA


Book Description

Provides an in-depth treatment of ANOVA and ANCOVA techniques from a linear model perspective ANOVA and ANCOVA: A GLM Approach provides a contemporary look at the general linear model (GLM) approach to the analysis of variance (ANOVA) of one- and two-factor psychological experiments. With its organized and comprehensive presentation, the book successfully guides readers through conventional statistical concepts and how to interpret them in GLM terms, treating the main single- and multi-factor designs as they relate to ANOVA and ANCOVA. The book begins with a brief history of the separate development of ANOVA and regression analyses, and then goes on to demonstrate how both analyses are incorporated into the understanding of GLMs. This new edition now explains specific and multiple comparisons of experimental conditions before and after the Omnibus ANOVA, and describes the estimation of effect sizes and power analyses leading to the determination of appropriate sample sizes for experiments to be conducted. Topics that have been expanded upon and added include: Discussion of optimal experimental designs Different approaches to carrying out the simple effect analyses and pairwise comparisons with a focus on related and repeated measure analyses The issue of inflated Type 1 error due to multiple hypotheses testing Worked examples of Shaffer's R test, which accommodates logical relations amongst hypotheses ANOVA and ANCOVA: A GLM Approach, Second Edition is an excellent book for courses on linear modeling at the graduate level. It is also a suitable reference for researchers and practitioners in the fields of psychology and the biomedical and social sciences.




Eddy Covariance


Book Description

This highly practical handbook is an exhaustive treatment of eddy covariance measurement that will be of keen interest to scientists who are not necessarily specialists in micrometeorology. The chapters cover measuring fluxes using eddy covariance technique, from the tower installation and system dimensioning to data collection, correction and analysis. With a state-of-the-art perspective, the authors examine the latest techniques and address the most up-to-date methods for data processing and quality control. The chapters provide answers to data treatment problems including data filtering, footprint analysis, data gap filling, uncertainty evaluation, and flux separation, among others. The authors cover the application of measurement techniques in different ecosystems such as forest, crops, grassland, wetland, lakes and rivers, and urban areas, highlighting peculiarities, specific practices and methods to be considered. The book also covers what to do when you have all your data, summarizing the objectives of a database as well as using case studies of the CarboEurope and FLUXNET databases to demonstrate the way they should be maintained and managed. Policies for data use, exchange and publication are also discussed and proposed. This one compendium is a valuable source of information on eddy covariance measurement that allows readers to make rational and relevant choices in positioning, dimensioning, installing and maintaining an eddy covariance site; collecting, treating, correcting and analyzing eddy covariance data; and scaling up eddy flux measurements to annual scale and evaluating their uncertainty.