Experimental Design


Book Description

Now available in a paperback edition is a book which has been described as ``...an exceptionally lucid, easy-to-read presentation... would be an excellent addition to the collection of every analytical chemist. I recommend it with great enthusiasm.'' (Analytical Chemistry). Unlike most current textbooks, it approaches experimental design from the point of view of the experimenter, rather than that of the statistician. As the reviewer in `Analytical Chemistry' went on to say: ``Deming and Morgan should be given high praise for bringing the principles of experimental design to the level of the practicing analytical chemist.''.The book first introduces the reader to the fundamentals of experimental design. Systems theory, response surface concepts, and basic statistics serve as a basis for the further development of matrix least squares and hypothesis testing. The effects of different experimental designs and different models on the variance-covariance matrix and on the analysis of variance (ANOVA) are extensively discussed. Applications and advanced topics (such as confidence bands, rotatability, and confounding) complete the text. Numerous worked examples are presented.The clear and practical approach adopted by the authors makes the book applicable to a wide audience. It will appeal particularly to those with a practical need (scientists, engineers, managers, research workers) who have completed their formal education but who still need to know efficient ways of carrying out experiments. It will also be an ideal text for advanced undergraduate and graduate students following courses in chemometrics, data acquisition and treatment, and design of experiments.




Experimental Methods for Science and Engineering Students


Book Description

An overview of experimental methods providing practical advice to students seeking guidance with their experimental work.




Experimental Methods


Book Description

This concise and easy to read text introduces first year students to the analysis and presentation of experimental data. Written for students taking introductory physics courses at tertiary level, Experimental Methods will be a vital resource for all students involved in experimental or laboratory work. It will be equally useful for other quantitative subjects such as chemistry, engineering and geology. Topics of fundamental importance such as keeping a laboratory notebook, analysing experimental data and report writing are often dealt with in separate texts. This book integrates these topics and provides many of the tools that students will need at first year level and beyond.




The Statistical Analysis of Experimental Data


Book Description

First half of book presents fundamental mathematical definitions, concepts, and facts while remaining half deals with statistics primarily as an interpretive tool. Well-written text, numerous worked examples with step-by-step presentation. Includes 116 tables.




Data Analysis for Experimental Design


Book Description

This engaging text shows how statistics and methods work together, demonstrating a variety of techniques for evaluating statistical results against the specifics of the methodological design. Richard Gonzalez elucidates the fundamental concepts involved in analysis of variance (ANOVA), focusing on single degree-of-freedom tests, or comparisons, wherever possible. Potential threats to making a causal inference from an experimental design are highlighted. With an emphasis on basic between-subjects and within-subjects designs, Gonzalez resists presenting the countless "exceptions to the rule" that make many statistics textbooks so unwieldy and confusing for students and beginning researchers. Ideal for graduate courses in experimental design or data analysis, the text may also be used by advanced undergraduates preparing to do senior theses. Useful pedagogical features include: Discussions of the assumptions that underlie each statistical test Sequential, step-by-step presentations of statistical procedures End-of-chapter questions and exercises Accessible writing style with scenarios and examples This book is intended for graduate students in psychology and education, practicing researchers seeking a readable refresher on analysis of experimental designs, and advanced undergraduates preparing senior theses. It serves as a text for graduate level experimental design, data analysis, and experimental methods courses taught in departments of psychology and education. It is also useful as a supplemental text for advanced undergraduate honors courses.




Basic Experimental Strategies and Data Analysis for Science and Engineering


Book Description

Every technical investigation involving trial-and-error experimentation embodies a strategy for deciding what experiments to perform, when to quit, and how to interpret the data. This handbook presents several statistically derived strategies which are more efficient than any intuitive approach and will get the investigator to their goal with the fewest experiments, give the greatest degree of reliability to their conclusions, and keep the risk of overlooking something of practical importance to a minimum. Features: Provides a comprehensive desk reference on experimental design that will be useful to practitioners without extensive statistical knowledge Features a review of the necessary statistical prerequisites Presents a set of tables that allow readers to quickly access various experimental designs Includes a roadmap for where and when to use various experimental design strategies Shows compelling examples of each method discussed Illustrates how to reproduce results using several popular software packages on a companion web site Following the outlines and examples in this book should quickly allow a working professional or student to select the appropriate experimental design for a research problem at hand, follow the design to conduct the experiments, and analyze and interpret the resulting data. John Lawson and John Erjavec have a combined 25 years of industrial experience and over 40 years of academic experience. They have taught this material to numerous practicing engineers and scientists as well as undergraduate and graduate students.




Reproducibility and Replicability in Science


Book Description

One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.




Design of Experiments for Engineers and Scientists


Book Description

The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry




Statistical Methods for Food Science


Book Description

The recording and analysis of food data are becoming increasingly sophisticated. Consequently, the food scientist in industry or at study faces the task of using and understanding statistical methods. Statistics is often viewed as a difficult subject and is often avoided because of its complexity and a lack of specific application to the requirements of food science. This situation is changing – there is now much material on multivariate applications for the more advanced reader, but a case exists for a univariate approach aimed at the non-statistician. This book provides a source text on accessible statistical procedures for the food scientist, and is aimed at professionals and students in food laboratories where analytical, instrumental and sensory data are gathered and require some form of summary and analysis before interpretation. It is suitable for the food analyst, the sensory scientist and the product developer, and others who work in food-related disciplines involving consumer survey investigations will also find many sections of use. There is an emphasis on a ‘hands on’ approach, and worked examples using computer software packages and the minimum of mathematical formulae are included. The book is based on the experience and practice of a scientist engaged for many years in research and teaching of analytical and sensory food science at undergraduate and post-graduate level.




Bayesian Statistics for Experimental Scientists


Book Description

An introduction to the Bayesian approach to statistical inference that demonstrates its superiority to orthodox frequentist statistical analysis. This book offers an introduction to the Bayesian approach to statistical inference, with a focus on nonparametric and distribution-free methods. It covers not only well-developed methods for doing Bayesian statistics but also novel tools that enable Bayesian statistical analyses for cases that previously did not have a full Bayesian solution. The book's premise is that there are fundamental problems with orthodox frequentist statistical analyses that distort the scientific process. Side-by-side comparisons of Bayesian and frequentist methods illustrate the mismatch between the needs of experimental scientists in making inferences from data and the properties of the standard tools of classical statistics.