Analysis of Heat Transfer for a Normally Impinging Liquid-metal Slot Jet


Book Description

A two-dimensional liquid-metal slot jet that is impinging normally against a uniformly heated flat plate is analyzed. The distributions of wall temperature and heat-transfer coefficient are obtained as functions of position along the plate. The liquid-metal assumptions are made that the jet is inviscid and that molecular condition is dominating heat diffusion. The solution is obtained by mapping the jet flow region into a potential plane where it occupies a strip of uniform width. The energy equation is transformed into potential coordinates, and an exact solution obtained in the strip region. Conformal mapping is then used to transform the solution into the physical plane.




Analysis of Impingement Heat Transfer for Two Parallel Liquid-metal Slot Jets


Book Description

An analytical method is developed for determining heat transfer by impinging liquid-metal slot jets. The method involves mapping the jet flow region, which is bounded by free streamlines, into a potential plane where it becomes a uniform flow in a channel of constant width. The energy equation is transformed into potential plane coordinates and is solved in the channel flow region. Conformal mapping is then used to transform the solution back into the physical plane and obtain the desired heat-transfer characteristics. The analysis given here determines the heat-transfer characteristics for two parallel liquid-metal slot jets impinging normally against a uniformly heated flat plate. The liquid-metal assumptions are made that the jets are inviscid and that molecular conduction is dominating heat diffusion. Wall temperature distributions along the heated plate are obtained as a function of spacing between the jets and the jet Peclet number.







NASA Technical Note


Book Description




Heat Transfer Analysis of Slot Jet Impingement Onto Roughened Surfaces


Book Description

The effect of surface roughness on jet impingement heat transfer was investigated in this research. A numerical analysis was conducted for free surface slot jet impinging normally onto a heated plate. Six different geometries and three different plate materials were investigated. The cooling fluid used for the analysis was water, and the flow was laminar with a range of Reynolds number (Re) from 500 to 1000. Temperature distribution, local and average heat transfer coefficient, and local and average Nusselt number were presented for each case. The steady state heat transfer results show that the increase in Reynolds number (Re) increases the local heat transfer coefficient and the local Nusselt number. Impinging the jet nozzle directly onto a step has a better heat transfer enhancement than impinging the jet nozzle in between steps. Materials with low thermal conductivity exhibit large variation in temperature along the solid-fluid interface. The variations of the interface temperature become smaller between all cases when applying the isothermal boundary condition. The transient heat transfer results show that the temperature of the interface increases with time until steady state condition is met. Materials with high thermal diffusivity reach the steady state condition with less time. The increase in surface roughness increases the time required to reach the steady state condition. The highest rates of heat transfer were found at locations where no fluid recirculation occurs. It takes less time to reach steady state condition when applying the isothermal boundary condition at the bottom surface of the plate.













STAR


Book Description




Handbook of Porous Media


Book Description

Over the last three decades, advances in modeling flow, heat, and mass transfer through a porous medium have dramatically transformed engineering applications. Comprehensive and cohesive, Handbook of Porous Media, Second Edition presents a compilation of research related to heat and mass transfer including the development of practical applications