Analysis of Metal-loss Corrosion on Energy Pipelines Based on ILI Data


Book Description

This book describes the models of calibrating the high-resolution in-line inspection (ILI) tools for sizing metal-loss corrosion defects and to characterize the growth of individual defects on energy pipelines. The models are developed in a Bayesian Framework. The calibration of ILI tools is carried out by comparing the field-measured depths and ILI-reported depths for a set of static defects. And the probabilistic characteristics of the parameters involved in the growth model are evaluated using Markov Chain Monte Carlo (MCMC) simulation technique based on ILI data collected at different times for a given pipeline. Moreover, a methodology is described to evaluate the time-dependent system reliability of a segment of a pressurized pipeline containing multiple active corrosion defects based on ILI data. Both the conventional Monte Carlo simulation and MCMC simulation techniques are employed in the methodology to evaluate the failure probability of the pipeline. The methodology considers three distinctive failure modes, namely small leak, large leak and rupture, and incorporates the hierarchical Bayesian power-law growth model for the depth of individual corrosion defect.




Bayesian Analyses of Metal-loss Corrosion on Energy Pipeline Based on Inspection Data


Book Description

Bayesian models are developed to calibrate the accuracies of high-resolution in-line inspection (ILI) tools for sizing metal-loss corrosion defects and to characterize the growth of individual defects on energy pipelines. Moreover, a methodology is proposed to evaluate the time-dependent system reliability of a segment of a pressurized pipeline containing multiple active corrosion defects. The calibration of ILI tools is carried out by comparing the field-measured depths and ILI-reported depths for a set of static defects. The measurement error associated with the field-measuring tool is found to be negligibly small; therefore, the field-measured depth is assumed to equal the actual depth of the defect. The depth of a corrosion defect reported by an ILI tool is assumed to be a linear function of the corresponding field-measured depth subjected to a random scattering error. The probabilistic characteristics of the intercept and slope in the linear function, i.e. the constant and non-constant biases of the measurement error, as well as the standard deviation of the random scattering error are then quantified using the Bayesian methodology. The proposed methodology is able to calibrate the accuracies of multiple ILI tools simultaneously and quantify the potential correlations between the random scattering errors associated with different ILI tools. The corrosion growth model is developed in a hierarchical Bayesian framework. The depth of the corrosion defects is assumed to be a power-law function of time characterized by two power-law coefficients and the corrosion initiation time, and the probabilistic characteristics of the parameters involved in the growth model are evaluated using Markov Chain Monte Carlo (MCMC) simulation technique based on ILI data iv collected at different times for a given pipeline. The model accounts for the constant and non-constant biases and random scattering errors of the ILI data, as well as the potential correlation between the random scattering errors associated with different ILI tools. The model is validated by comparing the predicted depths with the field-measured depths of two sets of external corrosion defects identified on two in-service natural gas pipelines. A simulation-based methodology is proposed to evaluate the time-dependent system reliability of a segment of a pressurized pipeline containing multiple active metal-loss corrosion defects. The methodology considers three distinctive failure modes, namely small leak, large leak and rupture, and incorporates the hierarchical Bayesian power-law growth model for the depth of individual corrosion defect. Both the conventional Monte Carlo simulation and MCMC simulation techniques are employed in the methodology to evaluate the failure probability. The methodology is illustrated using a joint of an underground natural gas pipeline that is currently in service.




Probabilistic Modeling and Bayesian Inference of Metalloss Corrosion with Application in Reliability Analysis for Energy Pipelines


Book Description

The stochastic process-based models are developed to characterize the generation and growth of metal-loss corrosion defects on oil and gas steel pipelines. The generation of corrosion defects over time is characterized by the non-homogenous Poisson process, and the growth of depths of individual defects is modeled by the non-homogenous gamma process (NHGP). The defect generation and growth models are formulated in a hierarchical Bayesian framework, whereby the parameters of the models are evaluated from the in-line inspection (ILI) data through the Bayesian updating by accounting for the probability of detection (POD) and measurement errors associated with the ILI data. The Markov chain Monte Carlo (MCMC) simulation in conjunction with the data augmentation (DA) technique is employed to carry out the Bayesian updating. Numerical examples that involve both the simulated and actual ILI data are used to validate the proposed Bayesian formulation and illustrate the application of the methodology. A simple Monte Carlo simulation-based methodology is further developed to evaluate the time-dependent system reliability of corroding pipelines in terms of three distinctive failure modes, namely small leak, large leak and rupture, by incorporating the corrosion models evaluated from the Bayesian updating methodology. An example that involves three sets of ILI data for a pipe joint in a natural gas pipeline located in Alberta is used to illustrate the proposed methodology. The results of the reliability analysis indicate that ignoring generation of new defects in the reliability analysis leads to underestimations of the probabilities of small leak, large leak and rupture. The generation of new defects has the largest impact on the probability of small leak.




Reliability-based Corrosion Management of Energy Pipelines


Book Description

Metal-loss corrosion is a major threat to the structural integrity and safe operation of underground oil and gas pipelines worldwide. The reliability-based corrosion management program has been increasingly used in the pipeline industry, which typically includes three tasks, namely periodic high-resolution inline inspections to detect and size corrosion defects on a given pipeline, engineering critical assessment of corrosion defects reported by the inspection tool and mitigation of defects. The work reported in this book addresses the engineering challenges involved in the reliability-based corrosion management program, including the probabilistic corrosion growth modeling based on imperfect inspection data, time-dependent reliability evaluation, and optimal inspection interval determination for corroding pipelines.




Corrosion and Reliability Assessment of Inspected Pipelines


Book Description

This book provides the most up-to-date, advanced methods and tools for risk assessment of onshore pipelines. These methods and tools are based primarily on information collected from ILI measurements and additional information about the soil surrounding the pipeline. The book provides a better understanding how the defects grow and interact (repulsion or attraction) and their spatial variability. In addition, the authors contemplate new defects that evolve between inspections and how they could affect the pipeline's reliability. A real-world case is presented to reinforce the concepts presented in the book. The book is structured into three parts: i) an introduction to onshore pipelines and the problem of corrosion, ii) a framework that deals with uncertainty for integrity programs for corroded pipelines, and iii) the applications of the methods presented in the book. The book is ideal for researchers and field engineers in oil and gas transportation and graduate and undergraduate engineering students interested in pipeline reliability assessments, spatial variability, and risk-based inspections.




Development of Probabilistic Corrosion Growth Models with Applications in Integrity Management of Pipelines


Book Description

Metal-loss corrosion is a major threat to the structural integrity and safe operation of underground oil and gas pipelines worldwide. The reliability-based corrosion management program has been increasingly used in the pipeline industry, which typically includes three tasks, namely periodic high-resolution inline inspections (ILIs) to detect and size corrosion defects on a given pipeline, engineering critical assessment of the corrosion defects reported by the inspection tool and mitigation of defects. This study addresses the core involved in the reliability-based corrosion management program. First, the stochastic process in conjunction with the hierarchical Bayesian methodology is used to characterize the growth of defect depth using imperfect ILI data. The biases, random scattering errors as well as the correlations between the random scattering errors associated with the ILI tools are accounted for in the Bayesian inference. The Markov Chain Monte Carlo (MCMC) simulation techniques are employed to carry out the Bayesian updating and numerically evaluate the posterior distributions of the parameters in the growth model. Second, a simulation-based methodology is presented to evaluate the time-dependent system reliability of pressurized energy pipelines containing multiple active metal-loss corrosion defects using the developed growth models. Lastly, a probabilistic investigation is carried out to determine the optimal inspection interval for the newly-built onshore underground natural gas pipelines with respect to external metal-loss corrosion by considering the generation of corrosion defects over time and time-dependent growth of individual defects. The proposed methodology will facilitate the reliability-based corrosion management for corroding pipelines.




Underground Pipeline Corrosion


Book Description

Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, numerical simulations for cathodic protection of pipelines, and use of corrosion inhibitors in managing corrosion in underground pipelines. The methods described in part two for detecting corrosion in underground pipelines include: magnetic flux leakage, close interval potential surveys (CIS/CIPS), Pearson surveys, in-line inspection, and use of both electrochemical and optical probes. While the emphasis is on pipelines transporting fossil fuels, the concepts apply as well to metallic pipes for delivery of water and other liquids. Underground Pipeline Corrosion is a comprehensive resource for corrosion, materials, chemical, petroleum, and civil engineers constructing or managing both onshore and offshore pipeline assets; professionals in steel and coating companies; and academic researchers and professors with an interest in corrosion and pipeline engineering. - Reviews the causes and considers the detection and prevention of corrosion to underground pipes - Addresses a lack of current, readily available information on the subject - Case studies demonstrate how corrosion is managed in the underground pipeline industry




Modelling of External Corrosion Propagation for Buried Pipelines Based on Stochastic Processes


Book Description

Pipelines are considered to be the most favored and reliable mode for transporting large quantities of gas/liquid. In recent years, because the pipelines are interconnected at a national and global level and because of increasing economic and regulatory constraints in dealing with aging and corroded pipeline systems, pipeline integrity management is an area of increasing relevance in the petroleum industry. Metal deterioration caused by corrosive soil is one of the major threats to the integrity of underground pipeline systems. External localized corrosion is one of the most common defects that can occur under normal operating conditions.In this Dissertation, we consider the external corrosion in pipeline structures in a probabilistic and dynamic manner. Multiple uncertainties from soil environment, pipeline structure, inspection process and maintenance are considered. The correlation between the spatial distribution of the external corrosion defects and the heterogeneous soil properties has been investigated. The correlation analysis is conducted by employing clustering techniques. As for the time domain, the long-time corrosion process is considered as a dynamic stable evolution process which contains three stages: nucleation, propagation and repassivation. In this study, the uncertainties introduced by the in-line inspections are investigated by using calibration methods and detection theories. Both random error and systematic error are assessed. Finally, a comprehensive pipeline maintenance strategy is proposed as an integrated solution to improve the efficiency of inspections and maintenances in industry practice.The contributions of this dissertation include: 1) a probabilistic model for the prediction of metal loss rate in underground pipeline structure is proposed. The model is able to account for the model uncertainty which comes from the imperfect prior knowledge and estimate the PDF of metal loss rate at a specified location. 2) A Bayesian approach for calibrating and estimating the actual external corrosion depth in buried pipeline structures based on an ultrasonic ILI inspection and the clustering technique was developed. We have taken the probability of defect existence into consideration. Hence a more realistic assessment of pipeline integrity can be achieved. 3) A clustering approach based on a hidden Markov random field is established for assessing the spatial distribution of external corrosion in a buried pipeline. The clustering approach presented in this study is easy to implement with the established ICM-EM algorithm. 4) A novel stochastic model framework for predicting the external corrosion growth in buried pipeline structures is presented and a time- and location- dependent maintenance strategy is established. We relate the soil properties with the corrosion growth propagation. The geometric Brownian bridge model was employed to present the corrosion rate evolution and hence is able to represent the inherent time-dependent dynamic property of corrosion growth.




Safety and Reliability – Safe Societies in a Changing World


Book Description

Safety and Reliability – Safe Societies in a Changing World collects the papers presented at the 28th European Safety and Reliability Conference, ESREL 2018 in Trondheim, Norway, June 17-21, 2018. The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk management Safety and Reliability – Safe Societies in a Changing World will be invaluable to academics and professionals working in a wide range of industrial and governmental sectors: offshore oil and gas, nuclear engineering, aeronautics and aerospace, marine transport and engineering, railways, road transport, automotive engineering, civil engineering, critical infrastructures, electrical and electronic engineering, energy production and distribution, environmental engineering, information technology and telecommunications, insurance and finance, manufacturing, marine transport, mechanical engineering, security and protection, and policy making.




Integrity of Pipelines Transporting Hydrocarbons


Book Description

This book describes technical and practical aspects of pipeline damage. It summarizes the phenomena, mechanisms and management of pipeline corrosion in-service. The topics discussed include pipelines fracture mechanics, damage mechanisms and evolution, and pipeline integrity assessment. The concept of acceptable risk is also elucidated and the future application of new knowledge management tools is considered.