Space Shift Keying in the Presence of Multiple Co-channel Interferers


Book Description

In this thesis, the performance of Space Shift Keying (SSK) Modulation, a technique for Multiple Input Multiple Output (MIMO) wireless communication systems is studied. The results are analyzed and compared assuming absence as well as presence of Co-Channel Interference (CCI). SSK Modulation is based on the concept of Spatial Modulation (SM) technique for MIMO systems. In SM, only one transmitting antenna remains in the state of action at a single point in time while others remain in sleep mode, resulting in no Inter Channel Interference (ICI). This is another reason for the increase in system performance and spectral e ciency. Unlike SM, in SSK Modulation there is no transmission of data symbols. However, the index of transmitting antenna is transmitted, resulting in advantages such as a reduction in detection complexity and hardware cost as there is no need for Amplitude Phase Modulation (APM) elements at both transmitting and receiving end. In this work, the exact analytical expression for Average Bit Error Rate (ABER) of SSK Modulation in the presence of CCI has been derived, and the same is further supported by MATLAB simulated results. The analysis with CCI is necessary because the spectral e ciency of the communication system can be improved by a reduction in the re-use factor of the co- channel; however, reducing the re-use factor also raises the co-channel interference. Performance for the systems with single as well as multiple receiving antennas has been analyzed twice considering correlated and uncorrelated Rayleigh fading channels. The asymptotic analysis results for uncorrelated Rayleigh fading channels have also been derived and compared with exact results.




Receiver Complexity Reduction of Multiple-Input Multiple-Output Wireless Communication Systems


Book Description

This dissertation, "Receiver Complexity Reduction of Multiple-input Multiple-output Wireless Communication Systems" by Xiaoguang, Dai, 戴晓光, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. DOI: 10.5353/th_b4658950 Subjects: Space time codes MIMO systems Wireless communication systems







Signal Processing for Mobile Communications Handbook


Book Description

In recent years, a wealth of research has emerged addressing various aspects of mobile communications signal processing. New applications and services are continually arising, and future mobile communications offer new opportunities and exciting challenges for signal processing. The Signal Processing for Mobile Communications Handbook provi




Stochastic Geometry Analysis of Multi-Antenna Wireless Networks


Book Description

This book presents a unified framework for the tractable analysis of large-scale, multi-antenna wireless networks using stochastic geometry. This mathematical analysis is essential for assessing and understanding the performance of complicated multi-antenna networks, which are one of the foundations of 5G and beyond networks to meet the ever-increasing demands for network capacity. Describing the salient properties of the framework, which makes the analysis of multi-antenna networks comparable to that of their single-antenna counterparts, the book discusses effective design approaches that do not require complex system-level simulations. It also includes various application examples with different multi-antenna network models to illustrate the framework’s effectiveness.




Design and Experimental Study of Turbo Equalization for Multiple Antenna Systems


Book Description

"Multiple-input multiple-output (MIMO) wireless communication systems have attracted a lot of interest in the past decade due to their capability in delivering high spectral efficiency as well as their robust performance against fading. In MIMO inter-symbol interference (lSI) channels, a severe interference problem occurs due to the lSI and co-channel interference. Thus, the error propagation problem becomes more serious, and its mitigation has to be considered when designing the receiver. In this regard, a turbo equalizer which exchanges soft information between the equalizer and the decoder has been shown to be an effective method to combat the lSI caused by frequency-selective channels. By iteratively exchanging soft extrinsic information between a soft-input soft-output equalizer and a decoder, turbo equalizer can achieve large performance gains over a separated equalizer and decoder structure. In its original form, Douillard employed maximum a posteriori probability (MAP) equalization and decoding methods in an iterative fashion. However, the computational complexity required to derive the a posteriori log likelihood ratio (LLR) for the MAP decoder is prohibitive. Therefore, the design of low-complexity turbo equalizers based on minimum mean square error (MMSE) criterion has attracted considerable attention in the past few years. In this work, a new soft decision feedback equalizer (SDFE) is proposed for MIMO Communication systems. The computational complexity of the proposed algorithm only linearly grows with the number of equalizer coefficients, compared with the quadratic complexity of minimum mean square error (MMSE)-based linear turbo equalizer with time-varying coefficients. The performance of our proposed algorithm is tested by extensive undersea trial data collected in two medium-range undersea experiments"--Abstract, Leaf iv.




Fading and Interference Mitigation in Wireless Communications


Book Description

Fading and Interference Mitigation in Wireless Communications will help readers stay up to date with recent developments in the performance analysis of space diversity reception over fading channels in the presence of cochannel interference. It presents a unified method for computing the performance of digital communication systems characterized by a variety of modulation and detection types and channel models. The book includes coverage of multichannel reception in various fading environments, influence of cochannel interference, and macrodiversity reception when channels are simultaneously affected by various types of fading and shadowing.




Efficiency and Security Analysis in Multi-user Wireless Communication Systems


Book Description

Efficiency and security are major concerns with increasingly higher importance in modern wireless communications. These two concerns are especially significant for multi-user wireless communications where different users share or compete for resources. Among different users, there are possibilities of cooperation, competition, and/or malicious behavior. Due to the possibility of cooperation among the users, the spectral and energy efficiency in multi-user wireless communications could be boosted. Due to the possibility of competition, the resource allocation in multi-user wireless systems may reach certain equilibrium. Due to the possibility of malicious behavior, the security and reliability of wireless communications can be undermined. In this thesis, a comprehensive analysis on the issues of efficiency and security in multi-user wireless communications is developed for three systems in four scenarios. The first multi-user system of multiple-input multiple-output two-way relaying has the feature of cooperation including a limited coordination scenario and a full coordination scenario. It is shown that high spectral efficiency can be achieved with efficient energy consumption in this system due to the cooperation among the users. Moreover, full coordination yields better results in both spectral and energy efficiency than limited coordination at the cost of higher overhead. The second multi-user system of legitimate transceiver(s) with a jammer features the existence of malicious behavior. To measure the jamming threat, the worst-case jamming is studied for different cases according to the jammer's knowledge of the legitimate communication. The optimal/sub-optimal jamming strategy in each case is analyzed and derived. The third multi-user system of two-user interference channel features the competition of the users. The situation is modeled using noncooperative games with continuous mixed strategies. The outcomes of the games are analyzed through the establishment of the conditions for the existence and uniqueness of mixed strategy Nash equilibrium.