Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation


Book Description

While residual stress can be a problem in many industries and lead to early failure of component, it can also be introduced deliberately to improve lifetimes. Knowledge of the residual stress state in a component can be critical for quality control of surface engineering processes or vital to performing an accurate assessment of component life unde




Introduction to the Characterization of Residual Stress by Neutron Diffraction


Book Description

Over the past 25 years the field of neutron diffraction for residual stress characterization has grown tremendously, and has matured from the stage of trial demonstrations to provide a practical tool with widespread applications in materials science and engineering. While the literature on the subject has grown commensurately, it has also remained




Neutrons and Synchrotron Radiation in Engineering Materials Science


Book Description

Retaining its proven concept, the second edition of this ready reference specifically addresses the need of materials engineers for reliable, detailed information on modern material characterization methods. As such, it provides a systematic overview of the increasingly important field of characterization of engineering materials with the help of neutrons and synchrotron radiation. The first part introduces readers to the fundamentals of structure-property relationships in materials and the radiation sources suitable for materials characterization. The second part then focuses on such characterization techniques as diffraction and scattering methods, as well as direct imaging and tomography. The third part presents new and emerging methods of materials characterization in the field of 3D characterization techniques like three-dimensional X-ray diffraction microscopy. The fourth and final part is a collection of examples that demonstrate the application of the methods introduced in the first parts to problems in materials science. With thoroughly revised and updated chapters and now containing about 20% new material, this is the must-have, in-depth resource on this highly relevant topic.




Practical Residual Stress Measurement Methods


Book Description

An introductory and intermediate level handbook written in pragmatic style to explain residual stresses and to provide straightforward guidance about practical measurement methods. Residual stresses play major roles in engineering structures, with highly beneficial effects when designed well, and catastrophic effects when ignored. With ever-increasing concern for product performance and reliability, there is an urgent need for a renewed assessment of traditional and modern measurement techniques. Success critically depends on being able to make the most practical and effective choice of measurement method for a given application. Practical Residual Stress Measurement Methods provides the reader with the information needed to understand key residual stress concepts and to make informed technical decisions about optimal choice of measurement technique. Each chapter, written by invited specialists, follows a focused and pragmatic format, with subsections describing the measurement principle, residual stress evaluation, practical measurement procedures, example applications, references and further reading. The chapter authors represent both international academia and industry. Each of them brings to their writing substantial hands-on experience and expertise in their chosen field. Fully illustrated throughout, the book provides a much-needed practical approach to residual stress measurements. The material presented is essential reading for industrial practitioners, academic researchers and interested students. Key features: • Presents an overview of the principal residual stress measurement methods, both destructive and non-destructive, with coverage of new techniques and modern enhancements of established techniques • Includes stand-alone chapters, each with its own figures, tables and list of references, and written by an invited team of international specialists




Non-destructive Materials Characterization and Evaluation


Book Description

This book is devoted to non-destructive materials characterization (NDMC) using different non-destructive evaluation techniques. It presents theoretical basis, physical understanding, and technological developments in the field of NDMC with suitable examples for engineering and materials science applications. It is written for engineers and researchers in R&D, design, production, quality assurance, and non-destructive testing and evaluation. The relevance of NDMC is to achieve higher reliability, safety, and productivity for monitoring production processes and also for in-service inspections for detection of degradations, which are often precursors of macro-defects and failure of components. Ultrasonic, magnetic, electromagnetic and X-rays based NDMC techniques are discussed in detail with brief discussions on electron and positron based techniques.




Targeted Use of Forming-Induced Residual Stresses in Metal Components


Book Description

Residual stresses are considered critical to quality in conventional manufacturing strategies. This is where the DFG’s Priority Programme 2013 comes in, looking instead at the opportunities and possibilities for improving the properties of components by targeted use of residual stresses. In the years 2017 to 2023, research teams from all over Germany were able to prove the stability, controllability and usefulness of residual stresses in flat and solid forming manufacturing processes of metallic components. In addition, the cross-project working groups achieved many insights into the fundamental understanding, simulation and, in particular, industry-oriented measurement of residual stresses. The extensive results of these six years of research activities are presented in this final report.




Neutrons and Synchrotron Radiation in Engineering Materials Science


Book Description

Besides its coverage of the four important aspects of synchrotron sources, materials and material processes, measuring techniques, and applications, this ready reference presents both important method types: diffraction and tomography. Following an introduction, a general section leads on to methods, while further sections are devoted to emerging methods and industrial applications. In this way, the text provides new users of large-scale facilities with easy access to an understanding of both the methods and opportunities offered by different sources and instruments.




The Nano-Micro Interface


Book Description

Controlling the properties of materials by modifying their composition and by manipulating the arrangement of atoms and molecules is a dream that can be achieved by nanotechnology. As one of the fastest developing and innovative -- as well as well-funded -- fields in science, nanotechnology has already significantly changed the research landscape in chemistry, materials science, and physics, with numerous applications in consumer products, such as sunscreens and water-repellent clothes. It is also thanks to this multidisciplinary field that flat panel displays, highly efficient solar cells, and new biological imaging techniques have become reality. This second, enlarged edition has been fully updated to address the rapid progress made within this field in recent years. Internationally recognized experts provide comprehensive, first-hand information, resulting in an overview of the entire nano-micro world. In so doing, they cover aspects of funding and commercialization, the manufacture and future applications of nanomaterials, the fundamentals of nanostructures leading to macroscale objects as well as the ongoing miniaturization toward the nanoscale domain. Along the way, the authors explain the effects occurring at the nanoscale and the nanotechnological characterization techniques. An additional topic on the role of nanotechnology in energy and mobility covers the challenge of developing materials and devices, such as electrodes and membrane materials for fuel cells and catalysts for sustainable transportation. Also new to this edition are the latest figures for funding, investments, and commercialization prospects, as well as recent research programs and organizations.




Mechanical Stress Evaluation by Neutrons and Synchrotron Radiation


Book Description

Selected, Peer reviewed papers from the MECA SENS V (The 5th International Conference on Mechanical Stress Evaluation by Neutrons and Synchrotron Radiation)/ QuBS2009 (The 3rd International Symposium of Quantum Beam Science Directorate of Japan Atomic Energy Agency), Mito 10 - 12 November 2009




Residual Stress Analysis on Welded Joints by Means of Numerical Simulation and Experiments


Book Description

The ability to quantify residual stresses induced by welding processes through experimentation or numerical simulation has become, today more than ever, of strategic importance in the context of their application to advanced design. This is an ongoing challenge that commenced many years ago. Recent design criteria endeavour to quantify the effect of residual stresses on fatigue strength of welded joints to allow a more efficient use of materials and a greater reliability of welded structures. The aim of the present book is contributing to these aspects of design through a collection of case-studies that illustrate both standard and advanced experimental and numerical methodologies used to assess the residual stress field in welded joints. The work is intended to be of assistance to designers, industrial engineers and academics who want to deepen their knowledge of this challenging topic.