Analysis of Steam-generator Tube-rupture Events Combined with Auxiliary-feedwater Control-system Failure for Three Mile Island-Unit 1 and Zion-Unit 1 Pressurized Water Reactors


Book Description

A steam-generator tube-rupture (SGTR) event combined with loss of all offsite alternating-current power and failure of the auxiliary-feedwater (AFW) control system has been investigated for the Three Mile Island-Unit 1 (TMI-1) and Zion-Unit 1 (Zion-1) pressurized water reactors. The Transient Reactor Analysis Code was used to simulate the accident sequence for each plant. The objectives of the study were to predict the plant transient response with respect to tube-rupture flow termination, extent of steam generator overfill, and thermal-hydraulic conditions in the steam lines. Two transient cases were calculated: (1) a TMI-1 SGTR and runaway-AFW transient, and (2) a Zion-1 SGTR and runaway-AFW transient. Operator actions terminated the tube-rupture flow by 1342 s (22.4 min) and 1440 s (24.0 min) for TMI-1 and Zion-1, respectively, but AFW injection was continued. The damaged steam generator (DSG) overfilled by 1273 s (21.2 min) for the TMI-1 calculation and by 1604 s (26.7 min) for the Zion-1 calculation. The DSG steam lines were completely filled by 1500 s (25 min) and 2000 s (33.3 min) for TMI-1 and Zion-1, respectively. The maximum subcooling in the steam lines was approx. 63 K (approx. 113°F) for TMI-1 and approx. 44 K (approx. 80°F) for Zion-1.
















Nuclear Technology


Book Description




Analysis of Multiple-tube Ruptures in Both Steam Generators for the Three Mile Island-1 Pressurized Water Reactor


Book Description

The operator guidelines were followed for both transients described. Both transients resulted in SG overfill and the tube-rupture flow did not terminate in either transient. The following statements can be deducted from the results of the calculations: the tube-rupture flow could not be stopped for either case during 2600 s (43 min) of transient time; each accident scenario resulted in SG overfill; both SGs overfilled by 1600 s (27 min) and 1800 s (30 min) for Cases 1 and 2, respectively; conditions for isolation of the SGs were not reached; and core subcooling was not lost in either case but the upper head was voided in Case 2. Comparison of the cooldown rates in the two cases after 1200 s (20 min) shows that these rates are equal (i.e., restart of the RCPs did not change the primary-system cooldown rate). However, in Case 2, a steam bubble was formed in the upper head, which did not disappear during the simulated time. One of the immediate actions in the guidelines was to fill both SGs to 95% level. This step was almost unnecessary because the tube-rupture flow was large enough that the 15.4 - mK/s (100 - °F h) cooldown-rate limit was exceeded and AFW could not be injected. Also, the guidelines did not address the SG overfill issue.




INIS Atomindex


Book Description







Mitigation of Steam Generator Tube Rupture in a Pressurized Water Reactor with Passive Safety Systems


Book Description

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.